

So f tware

I D C D O C U M E N T A T I O N

Archiving
Subsystem

Approved for public release;
distribution unlimited

 M a y 2 0 0 1 I D C - 7 . 5 . 1

A r c h i v i n g S u b s y s t e m

Notice

This document was published May 2001 by the Monitoring Systems Operation of Science Applications Inter-
national Corporation (SAIC) as part of the International Data Centre (IDC) Documentation. Every effort was
made to ensure that the information in this document was accurate at the time of publication. However, infor-
mation is subject to change.

Contributors

Anna Katherine Gault, Science Applications International Corporation
David Salzberg, Science Applications International Corporation

Trademarks

ORACLE is a registered trademark of Oracle Corporation.
Solaris is a registered trademark of Sun Microsystems.
SPARC is a registered trademark of Sun Microsystems.
SQL*Plus is a registered trademark of Oracle Corporation.
Sun is a registered trademark of Sun Microsystems.
UNIX is a registered trademark of UNIX System Labs, Inc.

Ordering Information

The ordering number for this document is SAIC-01/3013.

This document is cited within other IDC documents as [IDC7.5.1].

Notice Page

A r ch i v ing Subsys tem

A r c h i v i n g S u b s y s t e m

I D C - 7 . 5 . 1 M a y 2 0 0

I D C D O C U M E N T A T I O N

CONTENTS
About this Document i

n PURPOSE ii

n SCOPE ii

n AUDIENCE ii

n RELATED INFORMATION iii

n USING THIS DOCUMENT iii

Conventions iv

Chapter 1: Overview 1

n INTRODUCTION 2

n FUNCTIONALITY 5

n IDENTIFICATION 5

n STATUS OF DEVELOPMENT 5

n BACKGROUND AND HISTORY 6

n OPERATING ENVIRONMENT 6

Hardware 6

Commercial-Off-The-Shelf Software 7

Chapter 2: Architectural Design 9

n CONCEPTUAL DESIGN 10

n DESIGN ISSUES 11

Programming Language 11

Global Libraries 12

Database 12

Interprocess Communication (IPC) 12

Filesystem 12

Design Model 12
1

I D C D O C U M E N T A T I O N

Database Schema Overview 13

n FUNCTIONAL DESCRIPTION 14

Create Intervals 15

Queue Intervals 16

Run Interval 17

Monitoring 17

n INTERFACE DESIGN 19

Interface with Other IDC Systems 19

Interface with Internal Users 20

Interface with External Users 20

Interface with Operators 20

Chapter 3: Detai led Design 21

n DATA FLOW MODEL 22

External Data Flow 22

Internal Data Flow 23

Flow of Internal Data Exchange (Archive Protocol) 26

n PROCESSING UNITS 31

Archive 31

ManageInterval 34

GetData 36

MergeData 37

ReadWriteData 39

MSwriter 41

n DATABASE DESCRIPTION 43

Database Design 43

Database Schema 45

Chapter 4: Requirements 49

n INTRODUCTION 50

n GENERAL REQUIREMENTS 50

n FUNCTIONAL REQUIREMENTS 51

Generic Functional Requirements 51
 M a y 2 0 0 1 I D C - 7 . 5 . 1

 A r c h i v i n g S u b s y s t e m

A r c h i v i n g S u b s y s t e m

I D C - 7 . 5 . 1 M a y 2 0 0

I D C D O C U M E N T A T I O N

User Interface 51

Exception Handling and Recovery Procedures 52

n SYSTEM REQUIREMENTS 53

n REQUIREMENTS TRACEABILITY 53

References 59

Appendix: Def ining Fi leproducts A1

Glossary G1

Index I1
1

A r ch i v ing Subsys tem

A r c h i v i n g S u b s y s t e m

I D C - 7 . 5 . 1 M a y 2 0 0

I D C D O C U M E N T A T I O N

FIGURES
FIGURE 1. IDC SOFTWARE CONFIGURATION HIERARCHY 3

FIGURE 2. RELATIONSHIP OF ARCHIVING SUBSYSTEM TO CONTINUOUS
DATA AND MESSAGE SUBSYSTEMS 4

FIGURE 3. REPRESENTATIVE HARDWARE CONFIGURATION FOR
ARCHIVING SUBSYSTEM 7

FIGURE 4. CONCEPTUAL MODEL OF ARCHIVING SUBSYSTEM 11

FIGURE 5. ARCHIVING SUBSYSTEM INTERVAL PROCESSING AND STATUS 16

FIGURE 6. PROCESSING FLOW FOR RUN INTERVAL 18

FIGURE 7. DATA FLOW OF ARCHIVING SUBSYSTEM 23

FIGURE 8. DATA FLOW OF ARCHIVE PROCESSING 25

FIGURE 9. DATA FLOW OF PROTOCOL EXCHANGE BETWEEN ARCHIVE AND

MSWRITER 30

FIGURE 10. RELATIONSHIPS BETWEEN TABLES USED FOR ARCHIVING SUBSYSTEM 45
1

Arch i v ing Subsys tem

A r c h i v i n g S u b s y s t e m

I D C - 7 . 5 . 1 M a y 2 0 0

I D C D O C U M E N T A T I O N

TABLES
TABLE I: DATA FLOW SYMBOLS iv

TABLE II: ENTITY-RELATIONSHIP SYMBOLS v

TABLE III: TYPOGRAPHICAL CONVENTIONS vi

TABLE 1: SUPPORTED CONFIGURATIONS OF ARCHIVING SUBSYSTEM 11

TABLE 2: ARCHIVING SUBSYSTEM DATABASE TABLE USE 13

TABLE 3: SUPPORTED DATA TYPES AND DATABASE TABLES 15

TABLE 4: STRUCTURE OF COMMUNICATIONS FRAME 27

TABLE 5: DATA FRAME TYPES FOR COMMUNICATIONS FRAME 28

TABLE 6: VALID STATUS VALUES FOR COMMUNICATION FRAMES 28

TABLE 7: STRUCTURE OF ARCHIVING SUBSYSTEM TIMESTAMP FRAME 28

TABLE 8: STRUCTURE OF FILE AND DATA SEGMENT HEADER FRAMES 29

TABLE 9: DATABASE USAGE BY ARCHIVING SUBSYSTEM 46

TABLE 10: TRACEABILITY OF GENERAL REQUIREMENTS 53

TABLE 11: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:
GENERIC FUNCTIONAL REQUIREMENTS 54

TABLE 12: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:
USER INTERFACE 55

TABLE 13: TRACEABILITY OF FUNCTIONAL REQUIREMENTS: EXCEPTION HANDLING AND
RECOVERY PROCEDURES 56

TABLE 14: TRACEABILITY OF FUNCTIONAL REQUIREMENTS: SYSTEM REQUIREMENTS 57
1

A r c h i v i n g S u b s y s t e m

I D C - 7 . 5 . 1 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N
About th i s Document

This chapter describes the organization and content of the document and includes

the following topics:

n Purpose

n Scope

n Audience

n Related Information

n Using this Document
1 i

S o f t w a r e
I D C D O C U M E N T A T I O N

ii
About th i s Document

PURPOSE

This document describes the design and requirements of the Archiving Subsystem

software of the International Data Centre (IDC). The software is part of the Data

Archiving computer software component (CSC) of the Data Management Com-

puter Software Configuration Item (CSCI). This document provides a basis for

implementing, supporting, and testing the software.

SCOPE

The Archiving Subsystem software is identified as follows:

Title: Archiving Subsystem

This document describes the architectural and detailed design of the software

including its functionality, components, data structures, high-level interfaces,

method of execution, and underlying hardware. Additionally, this document speci-

fies the requirements of the software and its components. This information is mod-

eled on the Data Item Description for Software Design Descriptions [DOD94a] and

Software Requirements Specification [DOD94b]. This document does not describe

the modules under development.

AUDIENCE

This document is intended for all engineering and management staff concerned

with the design and requirements of all IDC software in general and of the

Archiving Subsystem in particular. The detailed descriptions are intended for pro-

grammers who will be developing, testing, or maintaining the Archiving Sub-

system.
 M a y 2 0 0 1 I D C - 7 . 5 . 1

A r c h i v i n g S u b s y s t e m

A r c h i v i n g S u b s y s t e m

I D C - 7 . 5 . 1 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼About this Document
RELATED INFORMATION

The following document complements this document:

n Database Schema [IDC5.1.1Rev2]

See “References” on page 59 for a list of documents that supplement this docu-

ment. The following UNIX manual (man) pages apply to the existing Archiving

Subsystem software:

n Archive

n Mswriter

USING TH IS DOCUMENT

This document is part of the overall documentation architecture for the IDC. It is

part of the Software category, which describes the design of the software. This

document is organized as follows:

n Chapter 1: Overview

This chapter provides a high-level view of the Archiving Subsystem,

including its functionality, components, background, status of develop-

ment, and current operating environment.

n Chapter 2: Architectural Design

This chapter describes the architectural design of the Archiving Sub-

system, including its conceptual design, design decisions, functions, and

interface design.

n Chapter 3: Detailed Design

This chapter describes the detailed design of the Archiving Subsystem

including its data flow, software units, and database design.

n Chapter 4: Requirements

This chapter describes the general, functional, and system requirements

for the Archiving Subsystem. Traceability tables define how these

requirements are met.
iii1

iv

▼ About this Document

S o f t w a r e
I D C D O C U M E N T A T I O N
n References

This section lists the sources cited in this document.

n Appendix: Defining Fileproducts

This appendix describes the procedure for defining fileproducts.

n Glossary

This section defines the terms, abbreviations, and acronyms used in this

document.

n Index

This section lists topics and features provided in the document along with

page numbers for reference.

Convent ions

This document uses a variety of conventions, which are described in the following

tables. Table I shows the conventions for data flow diagrams. Table II shows the

conventions for entity-relationship (E-R) diagrams. Table III lists typographical con-

ventions.

TABLE I: DATA FLOW SYMBOLS

Description Symbol1

process

external source or sink of data

data store

D = disk store

Db = database store

MS = mass store

#

D

 M a y 2 0 0 1 I D C - 7 . 5 . 1

A r c h i v i n g S u b s y s t e m

A r c h i v i n g S u b s y s t e m

I D C - 7 . 5 . 1 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼About this Document
control flow

data flow

decision

1. Symbols in this table are based on Gane-Sarson conventions [Gan79].

TABLE II: ENTITY-RELATIONSHIP SYMBOLS

Description Symbol

One A maps to one B.

One A maps to zero or one B.

One A maps to many Bs.

One A maps to zero or many Bs.

database table

TABLE I: DATA FLOW SYMBOLS (CONTINUED)

Description Symbol1

A B

A B

A B

A B

tablename

primary key
foreign key

attribute 1
attribute 2
.
.
.

attribute n
v1

vi

▼ About this Document

S o f t w a r e
I D C D O C U M E N T A T I O N
TABLE III: TYPOGRAPHICAL CONVENTIONS

Element Font Example

database table

database table and attribute,
when written in the dot nota-
tion

bold wfdisc

interval.state

database attributes

processes, software units, and
libraries

user-defined arguments and
variables used in parameter
(par) files or program com-
mand lines

titles of documents

 italics state

Archive

xtype = C

Database Schema

computer code and output

text that should be typed in
exactly as shown

attribute values

courier Arch_opsdb failure

edit-filter-dialog

QUEUED
 M a y 2 0 0 1 I D C - 7 . 5 . 1

A r c h i v i n g S u b s y s t e m

A r c h i v i n g S u b s y s t e m

I D C - 7 . 5 . 1 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N
Chapter 1: Ove rv iew

This chapter provides a general overview of the Archiving Subsystem software and

includes the following topics:

n Introduction

n Functionality

n Identification

n Status of Development

n Background and History

n Operating Environment
1 1

S o f t w a r e
I D C D O C U M E N T A T I O N

2

Chapter 1: Ove rv iew

INTRODUCT ION

The software of the IDC acquires time-series and radionuclide data from stations of

the International Monitoring System (IMS) and other locations. These data are

passed through a number of automatic and interactive analysis stages, which

culminate in the estimation of location and in the origin time of events (earth-

quakes, volcanic eruptions, and so on) in the earth, including its oceans and atmo-

sphere. The results of the analysis are distributed to States Parties and other users

by various means. Approximately one million lines of developmental software are

spread across six CSCIs of the software architecture. One additional CSCI is

devoted to run-time data of the software. Figure 1 shows the logical organization

of the IDC software. The Data Management CSCI receives and archives data

through the following CSCs:

n Data Archiving

This software migrates data from the operations database to the archive

database. It also archives data on the mass storage device and fills the

archive of waveform segments associated to events.

n Database Libraries

This software consists of libraries and include files needed for database

access.

n Database Tools

This software consists of utilities used in connection with database

access.

n Configuration Management

This software consists of scripts that facilitate recurring tasks in configu-

ration management.
 M a y 2 0 0 1 I D C - 7 . 5 . 1

A r c h i v i n g S u b s y s t e m

A r c h i v i n g S u b s y s t e m

I D C - 7 . 5 . 1 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 1:

Overview
FIGURE 1. IDC SOFTWARE CONFIGURATION HIERARCHY

Automatic
Processing

Interactive
Processing

Distributed
Processing

Data
Services

System
Monitoring

Station
Processing

Network
Processing

Atmospheric
Transport

Time-series
Analysis

Bulletin Process
Monitoring
and Control

Application
Services

Continuous
Data
Subsystem

Message
Subsystem

Subscription
Subsystem

Data Services
Utilities and

Data
Archiving

Database
Tools

Configuration
Management

Performance
Monitoring

System
Monitoring

IDC Software

Retrieve
Subsystem

Web
Subsystem

Data for
Software

Interactive
Data

System
Monitoring
Data

Automatic
Processing

Distributed
Processing
Data

Data
Services

Data
Management

COTS
Data

Environmental
Data

Post-
location
Processing

Time-series
Libraries

Operational
Scripts

Interactive
Tools

Distributed
Processing
Scripts

Data
Management

Database
Libraries

Data

Data

Event
Screening

Time-series
Tools

Libraries

Radionuclide
Processing

Authentication
Services

Analysis
Libraries

Radionuclide
Analysis

Distributed
Processing
Libraries
31

4

▼

Chapter 1:

Overview

S o f t w a r e
I D C D O C U M E N T A T I O N
Figure 2 shows the relationship of the Archiving Subsystem to the Continuous

Data and Message Subsystems of the Data Services CSCI. The Archiving Sub-

system moves data from the operations database and filesystem to the archive

database and mass store filesystem.

FIGURE 2. RELATIONSHIP OF ARCHIVING SUBSYSTEM TO CONTINUOUS
DATA AND MESSAGE SUBSYSTEMS

station
auxiliary

IMS

requester
AutoDRM

station
continuous

IMS

data
continuous
receiving

States Parties

Subsystem
Message

3

Data
Continuous

Subsystem

1

mass store
MS

archive
Db2

operations
D file system

continuous IMS
time-series data

forwarded
IMS data

data files

operations
Db1 database

data files

file
references

file
references

messages,
file references

Subsystem
Archiving

2

file referenceswaveform data

data for AutoDRM

auxiliary
waveforms

data for AutoDRM

filesystem

database

request
message

data
response request

response

data for AutoDRM

data for AutoDRM
 M a y 2 0 0 1 I D C - 7 . 5 . 1

A r c h i v i n g S u b s y s t e m

A r c h i v i n g S u b s y s t e m

I D C - 7 . 5 . 1 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 1:

Overview
FUNCT IONALITY

The Archiving Subsystem manages the transfer of data files from operational file-

systems to the mass store filesystem. Data files (waveforms, messages, and

fileproducts) are copied directly to the mass storage device. The associated data-

base tables (wfdisc, msgdisc, and fileproduct) are transferred from the operations

database to the archive database. Some attributes (that is, directory path, file

name, and file offset) are modified to reflect the appropriate data location on the

archive filesystem. Archive defines and queues the intervals to be archived, reads

the database referencing the data, reads the data from the files, and writes to the

archive hardware. Archive is monitored from WorkFlow. MSwriter is a light-weight

server run on the archive hardware that manages the transfer of data and reports

errors to the client software.

IDENT IF ICAT ION

Components of the Archiving Subsystem are identified as follows:

n Archive (the archiving client)

n MSwriter (the archiving server)

STATUS OF DEVELOPMENT

The design of the Archiving Subsystem is complete. The initial implementation of

the Archiving Subsystem addresses almost all requirements defined in Chapter 4:

Requirements. Minor extensions to the initial implementation are under develop-

ment to address some outstanding requirements.
51

6

▼

Chapter 1:

Overview

S o f t w a r e
I D C D O C U M E N T A T I O N
BACKGROUND AND H ISTORY

David Salzberg of SAIC developed the Archiving Subsystem in 1999.

The Archiving Subsystem was first installed in operations at the Prototype Interna-

tional Data Centre (PIDC) at the Center for Monitoring Research (CMR) in Arling-

ton, Virginia, U.S.A. in September 1999. It has been used continuously at the PIDC

since that time. The Archiving Subsystem was delivered to the International Data

Centre of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO IDC)

in Vienna, Austria in November 1999. It is anticipated that the IDC will install the

Archiving Subsystem when the mass storage device has been fully commissioned.

OPERAT ING ENVIRONMENT

The following paragraphs describe the hardware and commercial-off-the-shelf

(COTS) software required to operate the Archiving Subsystem.

Hardware

The Archiving Subsystem does not require significant system resources (32 MB

RAM, disk space for log files, run-time parameters) and runs locally on the system

hosting the data that are to be archived. With continuous waveform archiving, for

example, Archive resides on the Disk Loop Host (DLHOST), which is a Sun E4000

Server with approximately 115 GB of disk. The storage requirements for the

DLHOST are determined by the storage needs of the disk loop data files and are

independent of the Archiving Subsystem. Similarly, the processing load is driven by

signal processing of the disk loop data. MSwriter resides on the mass storage

server. This server has disk space to operate the server as well as the storage asso-

ciated with the mass storage device itself. MSwriter only requires a modest amount

of disk space, whereas the storage requirements for the mass storage device are

determined by the data accumulation rate. Figure 3 shows a representative hard-

ware configuration.
 M a y 2 0 0 1 I D C - 7 . 5 . 1

A r c h i v i n g S u b s y s t e m

A r c h i v i n g S u b s y s t e m

I D C - 7 . 5 . 1 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 1:

Overview
FIGURE 3. REPRESENTATIVE HARDWARE CONFIGURATION FOR
ARCHIVING SUBSYSTEM

Commerc i a l -Off -The-She l f So f tware

The Archiving Subsystem software requires a relational database both for its inter-

nal processing and as a source and destination for migration of the associated

database tables. The software was tested using ORACLE 8i. The software runs on

a Solaris 7 operating system.

disk loopD

operationsDb1 archiveDb2

archive
MS filesystem

Local Area Network

Mass Storage HostDLHOST

MSwriterArchive
71

A r c h i v i n g S u b s y s t e m

I D C - 7 . 5 . 1 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N
Chapter 2: A r ch i tec tu ra l Des i gn

This chapter describes the architectural design of the Archiving Subsystem and

includes the following topics:

n Conceptual Design

n Design Issues

n Functional Description

n Interface Design
1 9

S o f t w a r e
I D C D O C U M E N T A T I O N

10
Chapter 2: A r ch i tec tu ra l Des i gn

CONCEPTUAL DES IGN

The purpose of the Archiving Subsystem is to facilitate the permanent storage and

retrieval of all data arriving at the IDC. At the end of the archiving process the data

(filesystem objects) reside on the mass store and the database references to the

data reside in the archive database. While the process is conceptually simple, the

Archiving Subsystem also must organize the data for efficient retrieval from the

mass store, must verify that the data are archived correctly, and must include a

mechanism for error recovery.

Figure 4 is a conceptual model of the Archiving Subsystem. The subsystem moves

data from the operations disk storage filesystem to the archive storage medium. All

database references to the data are also copied from the operations database to

the archive database in a manner that ensures data accessibility at a later time.

WorkFlow is used to monitor the status of archiving.

Because the archive hardware resides on a file server separate from the operational

filesystem, a mechanism is provided to transmit data from the operational server to

the archive server. The archive hardware is assumed to use a UNIX filesystem,

where the data files can be referenced by directory, filename, and byte offset. A

socket connection is used to isolate the archive hardware from the operational sys-

tem.

The Archiving Subsystem may be configured to archive many different data types.

Table 1 lists the supported data types and the nominal waiting period prior to

archiving.
 M a y 2 0 0 1 I D C - 7 . 5 . 1

A r c h i v i n g S u b s y s t e m

A r c h i v i n g S u b s y s t e m

I D C - 7 . 5 . 1 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 2:

Architectural Design
FIGURE 4. CONCEPTUAL MODEL OF ARCHIVING SUBSYSTEM

DES IGN ISSUES

The following design decisions pertain to the Archiving Subsystem.

Prog ramming Language

Each software unit of the Archiving Subsystem is written in the C programming

language unless otherwise noted in this document.

TABLE 1: SUPPORTED CONFIGURATIONS OF ARCHIVING SUBSYSTEM

Product Nominal Waiting Period

Continuous Waveform Data (CD-1.0, CD-1.1) archived after 3 days

Auxiliary waveforms archived after 7days

Messages and Fileproducts archived after 10 days

Archive

1

MSwriter

2

archive
Db2 database

archive
D2 data files

archived
data files

database
references
to archive
data files

archiving
data stream

operations
Db1 database

operations
D1 data files

WorkFlow
database
references

to operations
data files

archive interval state

operations
data files
111

12

▼

Chapter 2:

Architectural Design

S o f t w a r e
I D C D O C U M E N T A T I O N
Globa l L ib ra r i e s

The software of the Archiving Subsystem is linked to the following shared libraries:

liblogout, libpar, libinterp, libstdtime, and libgdi.

The software is also linked to the following COTS libraries: libsocket, libnsl, libm,

and libdl.

Database

The Archiving Subsystem uses the ORACLE database for managing the archiving

process and for tracking the archiving status, as well as for reading and writing

database records referencing the archived files.

I n te rp rocess Commun ica t ion (IPC)

The Archive Subsystem does not use the message services of the Distributed Appli-

cation Control System (DACS). However, the Archiving Subsystem may be initiated

from DACS.

F i l e sy s tem

The filesystem holds the run-time parameters (par files) of the Archiving

Subsystem. In addition, both the pre- and post-archiving file objects are stored on

the filesystem.

Des ign Mode l

The design of the Archiving Subsystem is primarily influenced by flexibility and reli-

ability requirements. The flexibility is achieved by the subsystem’s ability to man-

age the archiving of multiple data types (waveforms, messages, and so forth), and

by the use of the interval table, which eliminates the need for specialized code to

monitor the archiving process. All interfaces with other subsystems are handled by

the database. Reliability is achieved by using a transactional processing mechanism

in all processing steps; if any single step fails, the Archiving Subsystem attempts to

roll back to the original state.
 M a y 2 0 0 1 I D C - 7 . 5 . 1

A r c h i v i n g S u b s y s t e m

A r c h i v i n g S u b s y s t e m

I D C - 7 . 5 . 1 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 2:

Architectural Design
Database Schema Overv iew

The Archiving Subsystem maintains all key information in an ORACLE database.

Three database tables, arch_data_type, chan_groups, and lastid_arcdb, are unique to

the Archiving Subsystem and provide information for archive processing. The file-

system objects that are processed by the Archiving Subsystem are referenced in the

database. The database also stores the information, allowing the subsystem to

determine what data have already been archived.

Table 2 shows the database tables used by the Archiving Subsystem along with a

description of their use. The Name field identifies the database table. The Mode

field is “R” if the Archiving Subsystem reads from the table and “W” if it writes to

the table. The abbreviation following the mode indicates the database in which the

table resides; “Ops” is the operations database, and “Arch” is the archive data-

base.

TABLE 2: ARCHIVING SUBSYSTEM DATABASE TABLE USE

Name Mode Description

arch_data_type R/W Ops This table stores information representing each data
type (or class of data) that is supported.

chan_groups R/W Ops This table stores station and channel pairs grouped by
class and name, allowing the Archiving Subsystem to
determine how the data should be grouped.

dlfile R Ops This table describes the files in the disk loops that are
managed by the DLMan and DLParse applications.

fileproduct R Ops/
W Arch

This table contains descriptions of files containing prod-
ucts.

fpdescription R Ops This table contains descriptions of product types used
with file products.

interval R/W Ops This table defines the time intervals for processing.
131

14

▼

Chapter 2:

Architectural Design

S o f t w a r e
I D C D O C U M E N T A T I O N
FUNCT IONAL DESCR IPT ION

The primary function of the Archiving Subsystem is to facilitate permanent storage

of data in a manner ensuring complete data archiving while allowing for data

retrieval at a later time. The data types currently configured for archiving are listed

in Table 3. Other data types, such as CD-1.1 Frame Store, Radionuclide Data, and

Threshold Monitoring Results, can be configured using the fileproduct interface.

lastid R/W Ops This table contains counter values (last value used for
keys) and is a reference table from which programs
may retrieve the last sequential value of one of the
numeric keys. Unique keys are required before a record
can be inserted in numerous tables. lastid has exactly
one row for each keyname. problastid and rms_lastid
are views of the lastid table.

lastid_arcdb R/W Arc This table is unique to the Archiving Subsystem and
resides on the archive database. It is used by the
Archive application for obtaining unique wfid values.

msgdisc R Ops/
W Arch

This table contains information pertinent to AutoDRM
messages including the date and time that the message
was sent or received, identification information, and
where the message is stored.

wfaux R Ops/
W Arch

This table includes the size (in bytes) of waveform files.

wfdisc R Ops/
W Arch

This table contains waveform header and descriptive
information as well as a pointer (or index) to wave-
forms stored on disk.

TABLE 2: ARCHIVING SUBSYSTEM DATABASE TABLE USE (CONTINUED)

Name Mode Description
 M a y 2 0 0 1 I D C - 7 . 5 . 1

A r c h i v i n g S u b s y s t e m

A r c h i v i n g S u b s y s t e m

I D C - 7 . 5 . 1 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 2:

Architectural Design
The archiving process is straightforward; raw data are copied from the operational

filesystem to the archive filesystem (usually mounted on some type of mass stor-

age device). The corresponding database records are read from the operations

database, updated to reflect the new file location, and written to the archive data-

base. The Archiving Subsystem organizes the data during the archiving process to

allow easy retrieval. In addition, because failure to archive results in permanent loss

of data, the Archiving Subsystem monitors the status of archiving.

A conceptual diagram of the Archiving Subsystem is shown in Figure 5. This view is

based on processes, which are not software units. The processes relate to the soft-

ware units in a manner discussed in “Internal Data Flow” on page 23. The first

process (Create Intervals) generates new intervals to process by setting the inter-

val.state attribute to NEW. The intervals are then queued for processing in the

Queue Intervals process by updating the interval.state to QUEUED. The Archiving

Subsystem then loops over each interval in the Run Interval process. If the interval

is successfully archived, the interval.state is set to DONE, otherwise the interval.state

is set to FAILED. The following sections describe these processes in more detail.

Crea te In te rva l s

The Create Intervals process generates new interval rows for archiving. First, data-

base queries are obtained for a specific type of data (datatype) from a run-time

parameter or a parameter file. Create Intervals then executes this query and stores

the resulting intervals in internal data structures (using a new interval primary key

TABLE 3: SUPPORTED DATA TYPES AND DATABASE TABLES

Datatype Database Table

Waveforms wfdisc, wfaux

IMS Messages msgdisc

Station and Channel Capability Reports fileproduct
151

16

▼

Chapter 2:

Architectural Design

S o f t w a r e
I D C D O C U M E N T A T I O N
[intvlid]). The internal interval data structures are then inserted into the interval

table in the operations database. The basis for forming the intervals and the initial

value of the state attribute are defined in parameter files.

Queue In te rva l s

The Queue Intervals process determines the processing intervals that are ready to

be archived and inserts them into a data structure. The first action is accomplished

by executing a database query, which updates the state attribute of the interval

table from state NEW to state QUEUED. The database query, which represents the

queuing rules, is obtained from the parameter file. The queued intervals are then

inserted into an internal interval data structure.

FIGURE 5. ARCHIVING SUBSYSTEM INTERVAL PROCESSING AND STATUS

Intervals
Create

Intervals
Queue

Interval
Run

interval
last

Exit

Archiving Interval State

no

state = NEW

state = QUEUED

state = RUNNING

state = DONE

state = FAILED

1

2

3

yes

errors encountered

no error

?

 M a y 2 0 0 1 I D C - 7 . 5 . 1

A r c h i v i n g S u b s y s t e m

A r c h i v i n g S u b s y s t e m

I D C - 7 . 5 . 1 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 2:

Architectural Design
Run In te rva l

Run Interval processes each of the queued intervals sequentially as shown in

Figure 6. The first action in Run Interval is to update the interval.state attribute to

RUNNING. Run Interval then reads the operations database references into data

structures. The database query for reading the data structures is specific to the par-

ticular data type and is obtained from the parameter file. Next, Run Interval gener-

ates the data structures that will reference the data after they are in the archive

database. With most data types, this involves duplicating the operational data

structures and modifying the directory name, the filename, and the byte offset;

however, with waveform data types the software can be configured to merge adja-

cent records. The details of merging adjacent records are discussed in “Merge-

Data” on page 37.

After the archived data structures are constructed, the data are read from the oper-

ations data file referenced in the operational data structures. The data are then

transmitted to the application MSwriter through a socket connection. MSwriter

writes the data to a mass storage device and reports its final status to the Run

Interval process. Run Interval then adds the data structure that represents the

archived data to the archive database. Finally, Run Interval updates the interval.state

attribute to DONE. If any errors are encountered the process aborts and the

interval.state attribute is set to FAILED.

Moni to r ing

Because the Archiving Subsystem is managed through the state attribute in the

interval table, the archiving process may be monitored through WorkFlow. This

eliminates the need for special code to monitor the Archiving Subsystem’s

progress.
171

18

▼

Chapter 2:

Architectural Design

S o f t w a r e
I D C D O C U M E N T A T I O N
FIGURE 6. PROCESSING FLOW FOR RUN INTERVAL

across

1

adjacent
Merge

references

merged
Loop over

references

3

Read
data

segments,
Send data

receive
ACK/NAK

2

4

5

Initialize,
read operations
database and

references

Db1

D1
operations

D2
archive
data file

data file

state = RUNNING

error reading database,
state = FAILED

Db2
archive database
file references

operations
database
references

Db1
error writing database references
state = FAILED

to archive
Add records

database

6

processing interval complete
 state = DONE

references

LAN

error transmitting data,
state = FAILED

error reading data,
state = FAILED

looping
or error

finished

operations
interval table

MSwriter
 M a y 2 0 0 1 I D C - 7 . 5 . 1

A r c h i v i n g S u b s y s t e m

A r c h i v i n g S u b s y s t e m

I D C - 7 . 5 . 1 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 2:

Architectural Design
INTERFACE DES IGN

This section describes the Archiving Subsystem’s interfaces with other IDC systems,

external users, and operators.

I n te r f ace w i th Othe r IDC Sys tems

The Archiving Subsystem interfaces with other IDC systems for storing data on the

mass store, monitoring the archiving process, and obtaining the data to be

archived. The mass store appears as a standard UNIX filesystem. The interface with

the monitoring systems is via the state attribute in the interval table. Each step of

archiving processing updates the state attribute of the interval table. WorkFlow (in

the DACS) monitors and presents, through a graphical user interface (GUI), the

interval status.

The Archiving Subsystem obtains the data to be archived by reading particular

database tables and the corresponding filesystem objects. The interface is fairly

straightforward: the database includes the location (directory name, filename, byte

offset, and the number of bytes) of the data. In addition, the database includes the

storage format of the data. Based on that information, the Archiving Subsystem is

able to read the filesystem object.

Three database tables are supported for the purpose of identifying the information

to be archived: wfdisc, msgdisc, and fileproduct. These tables support various data

types, as listed in Table 3 on page 15. The wfdisc table is used to describe the

waveform data files and is the primary interface for continuous waveform data and

auxiliary waveform data. The msgdisc table is used to describe the IMS messages

used by the message subsystem. With both waveform and message archiving the

Archiving Subsystem assumes that the wfdisc and msgdisc table attributes correctly

reference the data being archived.

The fileproduct table is used to handle any other type of data that must be

archived. Any filesystem object can be described as a fileproduct. Currently, six

types of fileproducts have been identified: Station and Channel Status reports,

radionuclide data, radionuclide reports, Threshold Monitoring results, and CD-1.1
191

20

▼

Chapter 2:

Architectural Design

S o f t w a r e
I D C D O C U M E N T A T I O N
Frame Stores. Additional fileproducts can be created as needed. The procedure to

define a fileproduct, with an example, is presented in “Appendix: Defining

Fileproducts” on page A1.

I n te r f ace w i th In te rna l Use r s

The Archiving Subsystem has no interfaces with internal data center users. How-

ever, internal users with accounts that allow direct access to the archive database

and mass storage device may require access to the data archived by the Archiving

Subsystem. Access to archived data is through the data references (wfdisc, msgdisc,

and fileproduct).

I n te r f ace w i th Ex te rna l Use r s

The Archiving Subsystem has no direct interfaces with external users. However,

external users who require access to the archived data may interface via the

AutoDRM process of the Message Subsystem [IDC7.4.2]. External users request

data via the Message Subsystem using the IMS 1.0 Formats and Protocols

[IDC3.4.1Rev2]. AutoDRM first checks the operations database for the data. If

data are not present, AutoDRM then queries the archive database. If the archive

database contains rows that satisfy the request, AutoDRM accesses the data files,

which reside on the mass storage device, through libwfm.

I n te r f ace w i th Opera to r s

The Archiving Subsystem can be monitored and maintained through the WorkFlow

process of the Distributed Application Control System (DACS) [IDC7.3.1] because

the interval table is used to store the state of the processing. IDC Operators moni-

tor the software for old intervals that are not in state DONE or for any FAILED

intervals. Additional information is available in log files of the Archive and MSwriter

processes.
 M a y 2 0 0 1 I D C - 7 . 5 . 1

A r c h i v i n g S u b s y s t e m

A r c h i v i n g S u b s y s t e m

I D C - 7 . 5 . 1 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N
Chapter 3: De ta i l ed Des i gn

This chapter describes the detailed design of the Archiving Subsystem and includes

the following topics:

n Data Flow Model

n Processing Units

n Database Description
1 21

S o f t w a r e
I D C D O C U M E N T A T I O N

22
Chapter 3: De ta i l ed Des i gn

DATA FLOW MODEL

The data flow of the Archiving Subsystem can be viewed from several perspec-

tives: the data flow in the context of external components, the data flow in the

context of internal processing, and the data flow in the context of internal data

exchange. The role of the Archiving Subsystem is to migrate data files to the mass

store and create database records in the archive database that point to the

archived files. The Archiving Subsystem fulfills its role by a defined sequence of

steps to minimize the risk of data loss.

Ex te rna l Da ta F low

The external data flow is shown in Figure 7. The data are imported or created

using other subsystems (for example, Continuous Data Subsystem, Message Sub-

system, or System Monitoring), resulting in files on the filesystem and correspond-

ing database records pointing to the files. The Archiving Subsystem reads the

operations database records and corresponding data files and copies the data to

the mass storage hardware. After receiving acknowledgment of successful process-

ing, the Archiving Subsystem inserts new database records in the archive database

that reference the archived data.
 M a y 2 0 0 1 I D C - 7 . 5 . 1

A r c h i v i n g S u b s y s t e m

A r c h i v i n g S u b s y s t e m

I D C - 7 . 5 . 1 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
FIGURE 7. DATA FLOW OF ARCHIVING SUBSYSTEM

I n te rna l Da ta F low

The internal data flow is shown in Figure 8, including both the functional data flow

and the data flow in the context of software units. Processes in the Figure are indi-

cated with two-word titles and software units have single-word names. Several

processes may be performed by a single software unit (for example, the processes

operations
databaseDb1

fileproduct
records

operations
filesystemD1

msgdisc
records

Subsystem
Message

Subsystem
Data

Continuous

archive
databaseDb2

archive
working
directory

MS

Archive

1

MSwriter

2

a c

database
file pointers for

archived data files

data stream

data files

fileproduct
data file

archived
data files

waveform and
message data file

intervals

waveform
 data file

wfdisc
records

file
references

ACK/NAK

fileproducts
generate

that
subsystems

b

231

24

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
Create Intervals, Queue Intervals, and Read Intervals are performed by the software

unit ManageInterval) or a single process may be performed by several software

units (for example, the process Run Interval is performed by the software units Get-

Data, MergeData, and ReadWriteData).

The first step in the internal data flow is the initialization of the archiving process.

Initialization involves reading the run-time parameters, opening the database con-

nections, and reading the parametric data stored in the database table

arch_data_type. One required run-time parameter is datatype. Some of the para-

metric values are based on the value of the datatype parameter. In particular, most

of the database queries are datatype-specific; for these, the parameter name

includes the datatype (for example, PRIARC-interval_create gives the param-

eter for creating intervals for datatype PRIARC).

The next step is to identify what data must be archived. This step is handled by the

software unit ManageInterval in the process Create Intervals. The basis for this step

is to execute the datatype-specific parameterized interval creation query. This

query identifies new intervals by comparing the time range of the referencing

database records to existing intervals. If the interval does not yet exist, the process

Create Intervals generates a new database row in the interval table.

After the intervals are identified, the next step is to determine when data are ready

to be archived. Because the system uses the interval table to identify, queue, and

track the archiving process, the data are queued for archive processing by updating

the state attribute in the interval table. Thus, the primary role of the process Queue

Intervals (in the software unit ManageInterval) is to execute database queries that

update the state attribute of the interval table to state QUEUED based on the data-

base query that is specified in datatype-specific parameters. The typical queuing

compares the interval time to the current time; if the difference is greater than a

value specified in the database query, then the interval is queued.

The software unit ManageInterval then reads all the queued intervals for the

datatype (or interval.class) being archived. The Archiving Subsystem then processes

the intervals in time order.
 M a y 2 0 0 1 I D C - 7 . 5 . 1

A r c h i v i n g S u b s y s t e m

25
ID

C
-7

.5
.1

 M
a

y
 2

0
0

1

A
rc

h
iv

in
g

 S
u

b
sy

ste
m

▼

C
h

a
p

te
r 3

:

D
e

ta
ile

d
 D

e
s
ig

n

S
o

ftw
a

re
I

D
C

D

O
C

U
M

E
N

T
A

T
I

O
N

archive
databaseDb2

operations filesD2

rval,
tions,
rences,
e file,
ences

omm frames

data

archive
file

references

ReadWriteData

3c

 interval
us
FIGURE 8. DATA FLOW OF ARCHIVE PROCESSING

Run Interval

3

2a 2b 2c

operations
databaseDb1

MSwriter

4

archive filesMS1

interval,
operations,

inte
opera

update
interval

database references to
operations file

file references

file refe
archiv
refer

intervals

parameter filesD1

arch_data_typeDb4

c
data frames

Create
Intervals

Queue
Intervals

Read
Intervals

(initialize processing,
Archive

read parameter file,
obtain database

queries)

1

ManageInterval

2

GetData

3a

MergeData

3b

interval record
updated

stat
intervalsquerydatabase

query

queued
intervals

26

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
The Archiving Subsystem processes each interval sequentially, executing the pro-

cess Run Interval. The data flow in this functional unit can best be understood by

examining the data flow from the software component perspective. First, Archive

updates the interval.state to RUNNING. Next, Archive calls GetData, which reads in

the database records that reference the data that are being archived. Archive then

invokes the software component MergeData. MergeData merges adjacent database

records and generates new data structures that reference the archived data. The

new archive data structures are based on the operational data structures. Fileprod-

ucts or messages are initialized by duplicating the data structure. For waveform

datatypes, the software can be configured to merge adjacent waveform data by

setting the attribute merge_data to y in the arch_data_type table. In this mode, if

two wfdisc data structures for the same channel are adjacent (the first sample ref-

erenced in one data structure is one sample later than the last sample in the previ-

ous structure), then the two structures are combined into one.

Some of the data structure attributes (dir, dfile, and foff) are adjusted for the new

location of the data after they are archived. The adjustments occur as the first step

in ReadWriteData. ReadWriteData then reads the data from the data file, generates

a checksum, and sends the data to MSwriter using the archive protocol. MSwriter

verifies the checksum, creates new directories and files that are needed, and writes

the data to a local filesystem (usually a mass storage device). When this operation

is completed successfully for all data in an interval, ReadWriteData inserts the new

data structures that reference the archived data into the archive database. If an

error occurs in the file transfer or in the database write, the process is aborted and

Archive updates the interval.state to FAILED; otherwise, it is updated to DONE. If an

error is encountered, no effort is made to remove the data file, which may have

been created on a write-only archive filesystem.

F low o f I n te rna l Da ta Exchange
(A rch i ve P ro toco l)

The data flow between the archiving client (Archive) and the archiving server

(MSwriter) follows the archive protocol, which provides a robust method for trans-

ferring data between the client and server. The archive protocol relies on the

exchange of data structures, which are referred to as “frames.” Each transmission
 M a y 2 0 0 1 I D C - 7 . 5 . 1

A r c h i v i n g S u b s y s t e m

A r c h i v i n g S u b s y s t e m

I D C - 7 . 5 . 1 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
begins with a communication frame using the format defined in Table 4. The com-

munication frame indicates the type of the next frame that will be sent from that

source (either client or server) in the xtype field (see Table 5). A communication

frame with xtype = C acknowledges communications and indicates status (see

Table 6). A communication frame with xtype = A, F, P, or D is immediately followed

by another frame. Table 7 lists the structure of an archive timestamp frame, which

follows a communication frame with xtype = A. The timestamp frame is used to

verify that Archive and MSwriter are synchronized. If the timestamp from Archive

differs by more than 100 seconds from the time it is received by MSwriter, then the

connection is dropped (this requires that the system clocks on the Archive and

MSwriter hosts agree). File headers and data segment headers (which follow a

communication frame with xtype = F and P, respectively) use a common structure,

as shown in Table 8. When xtype = D, a data frame follows. A data frame contains

raw bytes; the size and the checksum of the data frame are defined in the commu-

nication frame.

TABLE 4: STRUCTURE OF COMMUNICATIONS FRAME

Name Storage Type Description

fsn long frame sequential number

xsize long frame size

xchksum long frame checksum

status int status (when xtype = C)

xtype char type of the following data frame
271

28

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N

TABLE 5: DATA FRAME TYPES FOR COMMUNICATIONS FRAME

xtype Frame Type

A timestamp frame

C communications frame

D data frame

F file header frame

P data segment header frame

TABLE 6: VALID STATUS VALUES FOR COMMUNICATION FRAMES1

1. Only applicable for xtype = C.

Values (from an
enumerated list) Type Description

ARCH_PROC_OK info system is behaving normally

Arch_retransmission info Archive is informing MSwriter that it will
retransmit a segment

Send_cksum_fail warn checksum operation failed

Dir_make_fail error server is unable to make directory

File_open_fail error server is unable to open file

File_write_fail error server is unable to write the file

Server_io_fail fatal an unknown error condition was encountered

TABLE 7: STRUCTURE OF ARCHIVING SUBSYSTEM TIMESTAMP FRAME

Name Storage Type Description

etime epoch_t time of message for receipt valid

starttime long this field is not used

endtime long this field is not used
 M a y 2 0 0 1 I D C - 7 . 5 . 1

A r c h i v i n g S u b s y s t e m

A r c h i v i n g S u b s y s t e m

I D C - 7 . 5 . 1 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design

The data flow relating to the Archiving Subsystem protocol is shown in Figure 9.

First, the Archive component ReadWriteData opens the socket connection.

MSwriter is defined as an inetd daemon, and therefore opening the socket connec-

tion invokes an instance of MSwriter on the mass storage server. Archive then

transmits a communication frame with xtype = A followed by a timestamp frame.

MSwriter acknowledges receipt by sending back a communication frame with

xtype = C. If the acknowledgment indicates successful completion of the operation,

Archive transmits a communication frame with xtype = F followed by a file header

frame. MSwriter makes a new directory (if necessary) and opens the file for writing.

If any of these actions fail, MSwriter reports the appropriate error condition to

Archive in a communication frame with xtype = C and status from the enumerated

list shown in Table 6; otherwise, MSwriter reports success in the communication

frame (status = ARCH_PROC_OK). Archive then transmits a communication frame

with xtype = P followed by a segment header frame, which tells MSwriter how

much data to expect. This frame is again acknowledged by MSwriter using a com-

munication frame with xtype = C. Next, Archive transmits a communication frame

with xtype = D, which indicates that data are coming and contains the checksum of

the data. Archive then sends the data stream to MSwriter. MSwriter validates the

data by performing a checksum and comparing it to the xchksum value sent in the

communication frame. If there is a discrepancy, MSwriter sends a communication

frame indicating that checksum failed, and Archive retransmits the data. If the

checksum continues to fail after a parameter-setable number of retries (the default

is 6), Archive generates an error condition and aborts processing; otherwise,

TABLE 8: STRUCTURE OF FILE AND DATA SEGMENT HEADER FRAMES

Name Storage Type Description

dir char[65] directory of archived data file

dfile char[33] name of archived file

foff long file offset (in bytes)

size long size of file (in bytes)
291

30

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
MSwriter reports success, and Archive transmits the next segment. Each segment is

a maximum of 64 KB (65,536 bytes); that is, a data file is transmitted in 64 KB

chunks. This value is defined in a header file.

FIGURE 9. DATA FLOW OF PROTOCOL EXCHANGE BETWEEN ARCHIVE AND

MSWRITER

communication frame (ACK)
(xtype = C)

communication frame (ACK)
(xtype = C)

communication frame (ACK)
(xtype = C)

file header frame

communication frame
(xtype = F)

data buffer, data frame

segment header frame

communication frame
(xtype = P)

timestamp data frame

communication frame

until file is complete

Client: Archive Server: MSwriter

(xtype = A)

communication frame
(xtype = D)

communication frame (ACK)
(xtype = C)

connect

store data
receive and

initialize

send filename

send data

receive data
prepare to

open file
create directory,

data header
send
 M a y 2 0 0 1 I D C - 7 . 5 . 1

A r c h i v i n g S u b s y s t e m

A r c h i v i n g S u b s y s t e m

I D C - 7 . 5 . 1 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
PROCESS ING UNITS

The Archiving Subsystem software consists of the following processing units:

n Archive

n ManageInterval

n GetData

n MergeData

n ReadWriteData

n MSwriter

ManageInterval, GetData, MergeData, and ReadWriteData are functions called by

Archive.

The following paragraphs describe the design of these units. The logic of the soft-

ware and any applicable procedural commands are also provided.

Arch i ve

Archive initiates the archiving process. It first parses the run-time parameters,

which include datatype-specific parameters. Archive then calls the four functions:

ManageInterval, GetData, MergeData, and ReadWriteData, which are described in

the sections that follow. Archive is the parent of the archiving process. It calls func-

tions that manage intervals, read from the operational filesystem (and database),

transmit data to MSwriter for archiving, and write the archive database records ref-

erencing the archived data.

I nput /P rocess ing /Output

Archive reads the arch_data_type database table for the datatype and the wfdisc,

msgdisc, and fileproduct database tables, which reference the raw data. Archive also

reads the data on the filesystem, intervals from the interval table, and the system

time. Finally, Archive reads the run-time parameters, which include datatype-spe-

cific parameters such as the parameters that contain the queries that control the

database access.
311

32

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
The outputs of the archiving process are new intervals, log files, and database

records that reference the archived data. In addition, data are transmitted over a

socket connection to MSwriter for permanent storage on the mass storage device.

The first step in the Archive process is to parse the run-time parameters. Next,

Archive reads the arch_data_type row for the parameter-specified datatype. Archive

then creates and queues intervals via the function ManageInterval. Functions called

by Archive also read the operations database records (GetData) into internal data

structures and generate the data structures that reference the archived data

(MergeData). The archive data structures are generated by copying the operations

database references, merging adjacent data structures (for time-series data), and

updating the attributes dir, dfile, and foff to reflect the location of the archived

data. Finally, Archive reads and transmits the data to MSwriter via the function

ReadWriteData, and inserts the archive data structures into the appropriate data-

base table in the archive database.

Cont ro l

Archive can be initiated from the command line. However, the command to initiate

archiving is typically invoked from cron. Run-time parameters (most of which are

stored in parameter files) are used to specify the datatype being archived and the

archiving rules. Some of the parameter names are datatype-specific, because the

value of the datatype parameter is used to determine the parameter name. For

example, the parameters contain SQL (Structured Query Language) statements

that define the rules for both interval creation and queueing as well as reading the

database records that reference the data. Archive also relies on feedback from

MSwriter to ensure that data were properly archived.

I n te r f aces

Archive interfaces with the archive filesystem through MSwriter by socket connec-

tion using the archive protocol. Archive interfaces with external systems (for exam-

ple, Continuous Data Subsystem, or Message Subsystem) through database

records (for example, msgdisc, wfdisc) and associated data files.
 M a y 2 0 0 1 I D C - 7 . 5 . 1

A r c h i v i n g S u b s y s t e m

A r c h i v i n g S u b s y s t e m

I D C - 7 . 5 . 1 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
Er ro r S ta tes

Error handling is fundamental to the architecture of Archive. Because archiving

data is one of the core missions of the IDC software, it is critical that Archive accu-

rately report its processing status. The approach used to accomplish this is to make

Archive transactional; Archive first determines what data are ready to be archived

and establishes intervals. Archive then reads the reference database records. Next,

Archive transmits the data via the archive protocol to MSwriter. Only after

MSwriter reports to Archive that processing was successful (and all of the data files

in an interval were archived) does Archive add the new reference rows to the

archive database. The interval.state is updated to DONE when all other steps have

completed. If any error occurs the interval.state is set to FAILED and the process is

aborted. The log file indicates where the problem occurred.

There are several places where errors can occur during Archive processing. First are

configuration errors, which include incorrect database names or passwords and

errors in the datatype-specific queries. Configuration errors are recorded in log

files. These errors typically occur prior to processing intervals. While processing

intervals there can be failures to read from the database, to read the data file, to

transmit to the archive hardware, to write the file or create the directory, or to

write the reference database rows.

The following list describes the common errors, causes, and defensive

programming:

n Failure in data transmission to the MSwriter. These failures can result

from hardware problems or local area network glitches. In such cases, the

connection between Archive and MSwriter times out. Archive captures

the error state and logs the problem. Archive aborts processing and

updates interval.state to FAILED. The only fix is to repair the hardware or

networking problem and re-archive the data.

n Error writing to the mass storage device. These errors indicate MSwriter is

unable to create a file or make a directory. Archive writes the error to a

log file, aborts processing, and updates interval.state to FAILED. The
331

34

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
problem is most likely the result of improper permission settings on the

mass storage device. To fix the problem validate and/or properly set the

file access permissions, and archive the interval again.

n Failure to read from an operational file. This failure occurs when the sys-

tem is unable to read from the operational file or an error is encountered

when reading from the file. When this occurs, Archive logs the error and

aborts processing. The problem has two probable causes: file permissions

are not set properly or the expected file size recorded in the database is

different than the actual file size of the data file. The fix to the first prob-

lem is to verify and set the permissions properly. The fix to the second

problem is to clean up the database records, such that either the file size

matches the actual size or the database records are purged. This problem

has only been observed when the Message Subsystem attempts to write

to a full filesystem partition. In one particular example, an error in the

Message Subsystem resulted in the database records recording a 5-byte

file size, whereas the filesystem had zero-length files.

n Error writing to the archive database. When this error occurs, Archive

reports that it is unable to insert rows into the archive database. It then

aborts processing and (if able to) updates interval.state to FAILED. This

error condition results from the archive database being full, missing

archive database tables, or the archive database instance being unavail-

able. The first and third problem can occur at any time. The second prob-

lem might occur immediately after installation. The repair for all three of

these problems is to add space to the archive database, create a table, or

restart the database instance, then rerun the interval.

Manage In te rva l

ManageInterval is a function called by Archive. ManageInterval handles the interval

creation and queuing by executing database queries; the queries are parsed from

run-time parameters (presumably stored in a parameter file). ManageInterval also

sets the interval.intvlid attribute based on the lastid.keyvalue, where keyname =

intvlid.
 M a y 2 0 0 1 I D C - 7 . 5 . 1

A r c h i v i n g S u b s y s t e m

A r c h i v i n g S u b s y s t e m

I D C - 7 . 5 . 1 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
I nput /P rocess ing /Output

ManageInterval requires the following inputs: datatype-specific database queries

that are obtained from the run-time parameters, system time, database tables that

are specified in the parameterized database queries (which may join with addi-

tional tables, such as chan_groups), intervals, and the lastid table.

The processing steps include executing the database queries to create the new

intervals by inserting the query results into an interval data structure. The primary

key for intervals, intvlid, is assigned based on the keyvalue from the lastid table.

The new intervals are then inserted into the interval table in the database. Manage-

Interval executes a query (from a run-time parameter) that updates interval.state to

QUEUED. The final processing step in ManageInterval is to retrieve the database

records for all of the QUEUED intervals for the particular datatype into a data struc-

ture. The resulting data structure and the number of queued intervals are the final

output and are returned to Archive as arguments in the function call. In addition,

ManageInterval returns the processing status Arch_ok if processing was success-

ful. If a database error condition was encountered, then ManageInterval returns

Arch_opsdb failure.

The outputs of ManageInterval are new intervals, which are inserted into the

interval database table. In addition, queued intervals are returned to Archive as

arguments in the ManageInterval function call.

Cont ro l

ManageInterval is initiated as a function call by Archive. The activity in

ManageInterval is controlled by the values passed in the function call and the

values in the associated database tables.

I n te r f aces

ManageInterval has two primary interfaces. It interfaces with the database and with

Archive when ManageInterval is invoked. All of the database interactions are han-

dled through the generic database interface (GDI). The interface with Archive is

through the function call.
351

36

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
Er ro r S ta tes

All of the potential errors encountered in ManageInterval involve failures in inter-

acting with the database, either creating intervals, updating intervals, reading

intervals, or obtaining the lastid value. The problems are either the result of a sys-

tem failure (for example, database server failure), errors in the parameterized que-

ries, or missing database tables. The symptom is the same; the query fails. With a

failed query Archive logs the failure (including logging the query) and aborts pro-

cessing.

GetData

GetData is a function called by Archive. GetData obtains the database records that

point to the data to be archived.

I nput /P rocess ing /Output

GetData’s input values are the datatype, the data structure containing the interval

being processed, and the datatype-specific database query to get the data. Get-

Data also obtains the database records referencing the data that are to be archived.

The queries executed by GetData may join with other database tables (such as the

chan_groups table) when archiving waveform data.

GetData incorporates the interval.time and interval.endtime into the query for read-

ing the database record that references the data to be archived. GetData then

selects the referencing database records and inserts them into datatype-specific

data structures. GetData branches on the database table name for the database

references (wfdisc, fileproduct, or msgdisc).

The outputs of GetData are the database records referencing the data. The refer-

ence database records are returned as elements in the function call. GetData also

returns an error status through the function return.
 M a y 2 0 0 1 I D C - 7 . 5 . 1

A r c h i v i n g S u b s y s t e m

A r c h i v i n g S u b s y s t e m

I D C - 7 . 5 . 1 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
Cont ro l

GetData is initiated as a function call by Archive. The activity in GetData is con-

trolled by the values passed in the function call.

I n te r f aces

GetData has two primary interfaces. It interfaces with the database, and it also

interfaces with Archive when GetData is invoked. All of the database interactions

are handled through the GDI. The interface with Archive is through the function

call.

Er ro r S ta tes

The only error condition for GetData is a failure to read the database records from

the operations database. In this case, it returns an error code to Archive. Archive

logs that it is unable to read the database records, aborts processing, and updates

interval.state to FAILED. The error is typically caused by a configuration error

resulting from an incorrect database query in the parameter file.

MergeData

MergeData is a function called by Archive. The role of MergeData is threefold: (1) it

duplicates the data structures referencing the operational data files, (2) it combines

data structures that represent adjacent waveform segments into single segments,

and (3) it maps the data structures referencing the operational data to the data

structures that reference the data to be archived. This third step is particularly

important when waveform segments are merged.

I nput /P rocess ing /Output

The inputs of MergeData are the data structures referencing the data to be

archived, the number of reference structures, and the values in the database table

arch_data_type (stored in a data structure). The first two types of input are argu-

ments in the function call; the third is passed as a global variable.
371

38

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
The processing involved in MergeData is based on the type of data being archived.

MergeData first duplicates the data structure containing the references to the data.

This structure is datatype-dependent because different datatypes have different

data structure sizes. For wfdisc records with the attribute merge_adjacent set to Y in

the arch_data_type table, MergeData combines adjacent data structures of type

wfdisc into a single data structure by modifying the elements nsamp (number of

samples) and endtime (end time of the waveform segment). The modified data

structure then represents a larger data segment, which is the union of the

pre-merged segments. The algorithm used to merge adjacent waveform segments

compares the endtime of one wfdisc data structure to the time of the next data

structure record. If the time difference is within 0.5 multiplied by the inverse of

sample rate of the expected time of the next sample, then MergeData assumes that

the data were actually adjacent and combines the two data structures. Finally,

MergeData sets up a hash structure that maps each operational data structure to an

archive data structure. Multiple operations database records can map to one

archive record.

The outputs from MergeData are the data structure referencing the data after

archived, the number of these structures, the hash structure, and the number of

elements in the hash structure.

Cont ro l

MergeData is initiated as a function call by Archive. The activity in MergeData is

controlled by the values passed in the function call. In addition, MergeData

branches on the database table name (or data structure type) and on a flag indi-

cating whether adjacent records should be merged.

I n te r f aces

The only interface in MergeData is the interface with Archive through the function

call.
 M a y 2 0 0 1 I D C - 7 . 5 . 1

A r c h i v i n g S u b s y s t e m

A r c h i v i n g S u b s y s t e m

I D C - 7 . 5 . 1 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
ReadWr i teData

ReadWriteData is a function called by Archive. The role of ReadWriteData is to send

the data to the archive hardware and add the database records referencing the

archived data to the archive database. ReadWriteData creates standard

(datatype-independent) data structures that encapsulate the data files that are to

be archived, the file offsets, and the file size. The standard structure excludes the

datatype-specific information such as sta and chan for wfdisc. ReadWriteData also

updates the attributes dir, dfile, and foff (or multiple foff’s for msgdisc rows) in the

data structures that reference the archived data. These attributes are updated

because the directory and filename are different after they are archived; in addi-

tion, because many operational files are combined into a single archived file, the

file offsets need to be updated to reflect the new location within the data file. After

the file reference data structures are set properly, ReadWriteData transmits the data

to MSwriter. Upon completion of the data transmission (and only if successful)

ReadWriteData inserts the data structures containing the reference database

records into the archive database.

I nput /P rocess ing /Output

ReadWriteData has several inputs. A data structure containing the arch_data_type

record is received as a global variable. The function call arguments for

ReadWriteData include data structures referencing the data to be archived, the cor-

responding number of data structures, the data structures referencing the archived

data once archived, the corresponding number of archive data structures, the hash

table elements, the number of hash table elements, and a data structure contain-

ing the interval row. ReadWriteData also receives, through the socket connection,

the status of the data transmission to MSwriter. The final inputs for ReadWriteData

are the contents of the data files that need archiving.

ReadWriteData first generates the datatype-independent data structures referenc-

ing the operational files. For efficiency reasons, ReadWriteData also updates some

of the attributes in the data structures that will reference the archived data. After

the references are updated (and finalized), ReadWriteData opens a socket connec-

tion to MSwriter. ReadWriteData then transmits the datatype-independent data
391

40

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
structure to MSwriter using the archive protocol. ReadWriteData receives the status

from MSwriter. If no errors are encountered, ReadWriteData sends the contents of

the operations files by sequentially reading the files into memory, computing a

checksum, and transmitting the information to MSwriter. After the data are suc-

cessfully transmitted to MSwriter, ReadWriteData inserts the data structures that

reference the archived data into the archive database.

ReadWriteData has the following outputs: a data stream transmitted to MSwriter

over the socket connection, the referencing database records written to the archive

database (after MSwriter reports success), and a status value reported to Archive

along with a text string describing any problems encountered during the operation

of ReadWriteData.

Cont ro l

ReadWriteData is initiated as a function call from Archive. The process terminates

when an error is encountered or when archiving of an interval is complete.

I n te r f aces

ReadWriteData has three primary interfaces. It interfaces with Archive through the

argument list in the function call, it communicates with MSwriter using the archive

protocol discussed in “Data Flow Model” on page 22, and it communicates with

the database using the GDI.

Er ro r S ta tes

As in Archive, error handling is critical in ReadWriteData. The most likely errors

occur when reading from the filesystem, transmitting data to MSwriter, and insert-

ing data structures in the archive database. The primary means of defensive pro-

gramming is to use a transactional approach; that is, if any action reports an error,

ReadWriteData aborts without corrupting any data. The transactional approach is

assured by inserting the archive database records as the final step in ReadWrite-

Data. The only mechanism by which the system can be corrupted is if the database
 M a y 2 0 0 1 I D C - 7 . 5 . 1

A r c h i v i n g S u b s y s t e m

A r c h i v i n g S u b s y s t e m

I D C - 7 . 5 . 1 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
records are written prematurely or if the data are corrupt. If an unrecoverable error

is encountered in ReadWriteData, then the database references are not written to

the database.

Problems encountered in reading from the filesystem are typically the result of a

configuration error or an error of upstream processing. The most probable system

configuration errors are improperly set file permissions; that is, ReadWriteData is

unable to open or read the file. If an error condition is encountered, ReadWriteData

returns the error condition along with the filename that it was unable to open.

Archive logs the problem, updates interval.state to FAILED, and then aborts pro-

cessing. Another failure occurs if the file size is different from its expected size. In

this case ReadWriteData reports to Archive that it was unable to read the expected

number of bytes and aborts processing. Archive again logs the problem, updates

interval.state to FAILED, and aborts processing.

A second class of errors occur because of problems encountered during communi-

cation with MSwriter, with several possible causes. One type of problem occurs

when MSwriter is not able to either write the files or make new directories, as

requested by ReadWriteData. The probable causes for this are: (1) the file permis-

sions are not set properly, (2) the physical device is out of space, or (3) there is a

hardware failure on the mass storage device. When this type of problem occurs,

ReadWriteData captures the cause of the failure and aborts by returning an error

code and error condition to Archive. Archive then logs the problem, updates

interval.state to FAILED, and aborts processing. Another primary cause of failure is

faulty communications, such as a lost socket connection or failure in validating the

checksum. When these error conditions are encountered, ReadWriteData reports

the problems to Archive, which logs the problem, updates interval.state to FAILED,

and aborts processing.

MSwr i te r

MSwriter is a light-weight application that services the mass storage filesystem.

MSwriter reads the control and data frames that are transmitted over a socket con-

nection from ReadWriteData and writes the data to the mass storage filesystem.

MSwriter also reports error conditions (should any MSwriter action fail) and vali-
411

42

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
dates checksums. In addition, MSwriter acknowledges all frames with either an

ACK or NAK (Acknowledgment or Negative Acknowledgment) in a communica-

tions frame.

I nput /P rocess ing /Output

MSwriter receives inputs from a socket connection. The inputs are a data stream

and control frames transmitted from ReadWriteData. MSwriter acts on the control

frame (for example, make directory), verifies all received data frames (via a check-

sum), and writes the data to the filesystem. All transmissions from ReadWriteData

require a response from MSwriter. The output from MSwriter is the archived data

file stored on the mass storage filesystem and an ACK (or NAK) transmitted to

ReadWriteData.

Cont ro l

MSwriter is initiated as an inetd daemon process; that is, MSwriter initiates when

ReadWriteData (or any other application) opens a socket connection to the appro-

priate port number, which is port 3888. The port number is assigned in a header

file using the variable Archiver_Port. MSwriter is controlled by ReadWriteData;

ReadWriteData sends MSwriter commands, which MSwriter executes.

I n te r f aces

MSwriter interfaces with ReadWriteData using the archive protocol defined in

“Flow of Internal Data Exchange (Archive Protocol)” on page 26. MSwriter inter-

faces with the mass store filesystem through standard UNIX commands.

Er ro r S ta tes

MSwriter’s role in error handling is to trap the errors and report them back to

ReadWriteData.
 M a y 2 0 0 1 I D C - 7 . 5 . 1

A r c h i v i n g S u b s y s t e m

A r c h i v i n g S u b s y s t e m

I D C - 7 . 5 . 1 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
DATABASE DESCR IPT ION

The primary role of the Archiving Subsystem is to copy data files and their refer-

encing database records from the operations database and filesystem to the

archive database and mass store filesystem. Archive reads from the operations

database via the GDI and writes to the archive database, also using the GDI.

Because of the core role of the database in the operations of the Archiving Sub-

system, it is appropriate to use the database for internal tracking and even for stor-

ing some archiving parameters.

Database Des i gn

In addition to reading database records referencing data files that are to be

archived and writing the corresponding archive database records, Archive uses a

database for identifying, queuing, and tracking the data archiving process. Archive

also uses the database to store some configuration information. Some information

regarding particular datatypes, such as the database table name encapsulating the

data, is stored in the database.

The entity-relationship diagram of the schema is shown in Figure 10. The diagram

shows that the datatype attribute in the arch_data_type table maps to the class and

name of the interval table. The interval table relates to multiple data tables, and the

specific table is determined by arch_data_type.table_name. The interval table map-

ping is also somewhat dependent on the table name. For the msgdisc table, msg-

disc.itime must be between interval.time and interval.endtime for

interval.class = MSG and interval.name = MSG, or msgdisc.idate must be between

interval.time and interval.endtime for interval.class = AUXARC and

interval.name = AUXNET. For the fileproduct table, the relationship to the interval

table is somewhat more complex. The interval.class and interval.name relate to a

specific value of fpdescription.prodtype. The fpdescription.typeid links with the

fileproduct.typeid. The time and endtime of the interval table relates with the time

and endtime of the fileproduct table. The relation is interval.time £ fileproduct.time

and interval.endtime ³ fileproduct.endtime.
431

44

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
When the arch_data_type.table_name attribute is wfdisc, there are additional

entity relationships. In this case, the archiving can have finer groupings; the wave-

form archiving can be queued by station and channel. To do this a station and

channel must map to the interval table. The table chan_groups handles this map-

ping; it links the class and name in the interval table to the sta and chan in the wfdisc

table. This linkage allows archiving to be configured to have, for example, all of the

primary stations archived together by having all of the available sta and chan pairs

map to one name and class pair. Similarly, each sta/chan pair can be archived sepa-

rately by having each sta/chan pair map to an individual class/name. Every station

or array is archived independently; that is, the class is set to primary archiving, and

the name is set to the array name [IDC5.1.1Rev2]. Each element in the array (sta/

chan pair) maps to the name and class of the array.
 M a y 2 0 0 1 I D C - 7 . 5 . 1

A r c h i v i n g S u b s y s t e m

A r c h i v i n g S u b s y s t e m

I D C - 7 . 5 . 1 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
FIGURE 10. RELATIONSHIPS BETWEEN TABLES USED FOR ARCHIVING
SUBSYSTEM

Database Schema

Table 9 shows the usage of database tables by the Archiving Subsystem. For each

table used, the third column shows the purpose for reading or writing each

attribute. The Action column shows if the table is read/written and in which data-

base instance (operations or archive) the action is taken.

arch_data_type

archid

chan_groups

class
name

interval

class
name
time

endtime
intvlid

fpdescription

typeid

fileproduct

fpid
typeid

msgdisc

msgid
intid

userid

wfaux

wfid

wfdisc

sta
chan
time
wfid

chanid lastid

keyname

time&endtime/time&endtime -

lastid_arcdb

keyname

wfid - keyvalue/keyname = wfid

wfid

dlfile

dir
dfile
dfid

chanid
dlid

intvlid - keyvalue/
keyname = intvlid

class/name

typeid

time&endtime/

time/endtime

time&endtime -
time/endtime

datatype - class

time/endtime -
time/time+tlen

sta/chan - sta/chan/
class = PRIARC|AUXARC

itime - time&endtime/
class = MSG/name = MSG,

class = AUXARC/name = AUXNET

class - name/
prodtype = STA_STATUS|

 CHAN_STATUS

sta

/

chan

idate - time&endtime/
451

46

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N

T

ABLE

 9: D

ATABASE

 U

SAGE

BY

 A

RCHIVING

 S

UBSYSTEM

Table Action Usage of Attributes

arch_data_type

ops
read

•

table_name

 indicates the database table storing the

dir,
dfile, foff,

and

 number of bytes

of the data to be
archived.

•

merge_adjacent

 indicates that time-continuous records
are to be combined into one longer segment (only appli-
cable if

table_name

 is

wfdisc

).

• data_type specifies the type of data being archived and
maps to the

class

attribute in the

interval

 table.

chan_groups

ops
read

• joins

sta

and

chan

 from

wfdisc

to the

name

 and

class

 of

interval

.

dlfile

ops
read

•

time

and

endtime

are used to define the archiving

interval

 (

time

and

endtime

in the

interval

 table).

fileproduct

ops
read,
arch
write

•

typeid, time,

and

 endtime

define the processing

intervals

.

•

dir, dfile, foff,

 and

dsize

 are used to locate the data being
archived (

dir, dfile,

and

 foff

 are modified in archiving).

fpdescription

ops
read

•

prodtype

 identifies the type of product and is used to
identify the row from a specific

name

 and

class

 in the

interval

 table.

•

typeid

 is used to link the

interval row to the fileproduct
row (for a particular prodtype).

interval ops
read/
write

• class and name are used to identify and queue the
archived elements.

• time and endtime give the boundaries for the processing
interval.

• state is used for tracking and queuing the processing
interval.

lastid ops
read/
write

• keyvalue is used for setting intvlid.

lastid_arcdb arch
read/
write

• wfid is used by the Archive application as a unique wave-
form identifier.
 M a y 2 0 0 1 I D C - 7 . 5 . 1

A r c h i v i n g S u b s y s t e m

A r c h i v i n g S u b s y s t e m

I D C - 7 . 5 . 1 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
msgdisc ops
read,
arch
write

• dir, dfile, fileoff, and filesize are used to locate the data
to be archived.

• foff and mfoff are modified in the archive processing.

• itime is used to define the processing interval (itime is
between interval.time and interval.endtime).

wfaux ops
read,
arch
write

• length indicates the waveform length in bytes being
archived.

wfdisc ops
read,
arch
write

• sta and chan define the data being archived.

• dir, dfile, foff, nsamp, and datatype define the data that
are to be archived or have been written to the archive.

TABLE 9: DATABASE USAGE BY ARCHIVING SUBSYSTEM (CONTINUED)

Table Action Usage of Attributes
471

A r c h i v i n g S u b s y s t e m

I D C - 7 . 5 . 1 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N
Chapter 4: Requ i rements

This chapter describes the requirements of Archiving Subsystem and includes the

following topics:

n Introduction

n General Requirements

n Functional Requirements

n System Requirements

n Requirements Traceability
1 49

S o f t w a r e
I D C D O C U M E N T A T I O N

50
Chapter 4: Requ i rements

INTRODUCT ION

The requirements of the Archiving Subsystem can be categorized as general, func-

tional, or system requirements. General requirements are nonfunctional aspects of

the Archiving Subsystem. These requirements express goals, design objectives, and

similar constraints that are qualitative properties of the system. The degree to

which these requirements are actually met can only be judged qualitatively. Func-

tional requirements describe what the Archiving Subsystem is to do and how it is to

do it. System requirements pertain to general constraints, such as compatibility

with other IDC subsystems, use of recognized standards for formats and protocols,

and incorporation of standard subprogram libraries.

GENERAL REQUIREMENTS

The Archiving Subsystem shall meet the following general requirements:

1. The archive destination shall be a target identified by a database table

with attributes that express directory, filename, file position offset, and

size.

2. The Archive Subsystem shall be capable of running unattended under

normal circumstances.
 M a y 2 0 0 1 I D C - 7 . 5 . 1

A r c h i v i n g S u b s y s t e m

A r c h i v i n g S u b s y s t e m

I D C - 7 . 5 . 1 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Requirements
FUNCT IONAL REQUIREMENTS

The requirements described in this section are categorized by function.

Gener i c Func t iona l Requ i rements

3. The Archiving Subsystem shall be able to archive data referenced by

database tables (that is, flat files). Each table will have attributes express-

ing directory, filename, file position offset, and size. Currently, the follow-

ing tables will be considered: wfdisc, msgdisc, and fileproduct.

4. The Archiving Subsystem shall be configurable to group files together

based on attributes in the database tables.

5. The Archiving Subsystem shall be configured to support an archiving

schedule for different datatypes based on the delivery schedule of each

datatype.

6. The Archiving Subsystem shall be able to archive “late arriving” data

(that is, data that have arrived after this type of data should have

arrived). Archiving late data will be handled automatically, and these data

will be grouped with either the previously archived data or with other

late arriving data.

7. The Archiving Subsystem shall provide a mechanism to exclude certain

subtypes of data from being archived. The exclusion will be made based

on database attributes.

User In te r face

The Archiving Subsystem is required to interface with users as follows:

8. The Archiving Subsystem shall report on the status of the archiving pro-

cesses.

9. The System Monitoring Subsystem software shall provide an “alert”

mechanism to notify operators of a lack of storage space or other critical

archiving related system problems.
511

52

▼

Chapter 4:

Requirements

S o f t w a r e
I D C D O C U M E N T A T I O N
10. The Archiving Subsystem shall provide a mechanism to selectively stop

and start processes.

11. The Archiving Subsystem shall have the ability to use customized time

constraints.

12. The Archiving Subsystem shall be able to work in two modes. In one

mode, the input and output database table names will be the same. In

the second mode, the input and output database table names will be dif-

ferent.

13. The Archiving System shall have the capability to optionally delete the

original data file after it has been successfully archived. If the file is

deleted, the reference(s) to that file in the input database table may be

optionally deleted.

14. For time-series data, the Archiving System shall support organizing the

data by time slices and/or by station.

Except ion Hand l ing and Recove ry
P rocedures

The Archiving Subsystem is required to handle error conditions as follows:

15. The Archiving Subsystem shall not lose any data.

16. The Archiving Subsystem shall have the ability to migrate to another

storage medium in the event of a major medium failure.

17. The Archiving Subsystem shall take precautions to ensure that the

archived data are identical to the original data. These precautions will be

limited to UNIX-level functions to verify that the input number of bytes

equals the output number of bytes. Results of this test will be recorded in

a log file.

18. The Archiving Subsystem shall provide a mechanism to verify that the

bytes in the original data are identical to the bytes in the archived data.

19. The Archiving System shall preserve any compression and/or digital sig-

natures stored in the original data.
 M a y 2 0 0 1 I D C - 7 . 5 . 1

A r c h i v i n g S u b s y s t e m

A r c h i v i n g S u b s y s t e m

I D C - 7 . 5 . 1 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Requirements
20. The Archiving Subsystem shall preserve all identifiers (IDs) and load dates

of the original data.

21. The Archiving Subsystem shall handle exceptional cases, for example,

wfdisc records with zero or few samples.

SYSTEM REQUIREMENTS

The following are system requirements for the Archiving Subsystem:

22. The Archiving Subsystem shall use an ORACLE database.

23. The Archiving Subsystem shall use command line arguments to pass run-

time parameters to the application software. These arguments will be

provided in par files, and standard IDC software will be used for reading

and parsing these files.

REQUIREMENTS TRACEABIL ITY

Tables 10 through 14 trace the requirements of the Archiving Subsystem to com-

ponents and describe how the requirements are fulfilled.

TABLE 10: TRACEABILITY OF GENERAL REQUIREMENTS

Requirement How Fulfilled

1 The archive destination shall be a tar-
get identified by a database table
with attributes that express directory,
filename, file position offset, and size.

The archived files are referenced by
the database tables on the archive
database. The tables are wfdisc,
msgdisc, and fileproduct.

2 The Archive Subsystem shall be capa-
ble of running unattended under nor-
mal circumstances.

The Archiving Subsystem is invoked
from cron and has no operator inputs.
531

54

▼

Chapter 4:

Requirements

S o f t w a r e
I D C D O C U M E N T A T I O N
TABLE 11: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:
GENERIC FUNCTIONAL REQUIREMENTS

Requirement How Fulfilled

3 The Archiving Subsystem shall be
able to archive database referenced
by database tables (that is, flat files).
Each table will have attributes
expressing directory, filename, file
position offset, and size. Currently,
the following tables will be consid-
ered: wfdisc, msgdisc, and fileproduct.

The Archiving Subsystem is capable of
archiving data referenced by wfdisc,
msgdisc, and fileproduct.

4 The Archiving Subsystem shall be
configurable to group files together
based on attributes in the database
tables.

The chan_groups table enables the
Archiving Subsystem to group wave-
forms by sta-chan. Other groupings
can be configured by modifying the
interval creation queries, which are
stored as run-time parameters.

5 The Archiving Subsystem shall be
configured to support an archiving
schedule for different datatypes
based on the delivery schedule of
each datatype.

The queuing rules are defined in SQL
statements stored as datatype-specific
parameters. In addition, each instance
of Archive can have its own timing as
defined in the cron configuration. If
multiple instances of Archive are run-
ning simultaneously, then multiple
instances of MSwriter are initiated.

6 The Archiving Subsystem shall be
able to archive “late arriving” data
(that is, data that have arrived after
this type of data should have arrived).
Archiving late data will be handled
automatically, and these data will be
grouped with either the previously
archived data or with other late arriv-
ing data.

This requirement has not been
satisfied.

7 The Archiving Subsystem shall pro-
vide a mechanism to exclude certain
subtypes of data from being archived.
The exclusion will be made based on
database attributes.

The datatype-specific parameters SQL
provide a mechanism to exclude sub-
types.
 M a y 2 0 0 1 I D C - 7 . 5 . 1

A r c h i v i n g S u b s y s t e m

A r c h i v i n g S u b s y s t e m

I D C - 7 . 5 . 1 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Requirements
TABLE 12: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:
USER INTERFACE

Requirement How Fulfilled

8 The Archiving Subsystem shall report
on the status of the archiving pro-
cesses.

The status is recorded both in log files
and in the interval.state.

9 The System Monitoring Subsystem
software shall provide an “alert”
mechanism to notify operators of a
lack of storage space or other critical
archiving related system problems.

The Archiving Subsystem logs errors
for lack of storage space and other
system problems. The Archiving Sub-
system also records the status of failed
archiving intervals, which are dis-
played by the WorkFlow program.

10 The Archiving Subsystem shall pro-
vide a mechanism to selectively stop
and start processes.

The Archiving Subsystem can be killed
from the UNIX command line. Due to
Archive’s transactional processing
model, no data are lost (though mass-
storage space may be wasted).

11 The Archiving Subsystem shall have
the ability to use customized time
constraints.

The time constraints are datatype-spe-
cific and are stored in the configura-
tion (par) files as part of the datatype-
specific SQL statements.

12 The Archiving Subsystem shall be
able to work in two modes. In one
mode, the input and output database
table names will be the same. In the
second mode, the input and output
database table names will be differ-
ent.

By default, the Archiving Subsystem
places the data in the standard tables
(wfdisc, msgdisc, fileproduct). The out-
going database table name can be
changed by a parameter. However,
the table structure must match the
expected table structure.

13 The Archiving System shall have the
capability to optionally delete the
original data file after it has been suc-
cessfully archived. If the file is
deleted, the reference(s) to that file in
the input database table may be
optionally deleted.

This requirement is not fulfilled. Purg-
ing is left to other process. For exam-
ple, DLMan manages the recycling of
disk loop files for the Continuous Data
Subsystem CD-1.0.

14 For time-series data, the Archiving
System shall support organizing the
data by time slices and/or by station.

The chan_groups table allows the
operator/user to define the station
grouping.
551

56

▼

Chapter 4:

Requirements

S o f t w a r e
I D C D O C U M E N T A T I O N
TABLE 13: TRACEABILITY OF FUNCTIONAL REQUIREMENTS: EXCEPTION
HANDLING AND RECOVERY PROCEDURES

Requirement How Fulfilled

15 The Archiving Subsystem shall not
lose any data.

The archive protocol includes data size
and checksums to ensure the correct
number of bytes of data are transmit-
ted and that the data have not been
corrupted; in addition, the software is
transactional.

16 The Archiving Subsystem shall have
the ability to migrate to another stor-
age medium in the event of a major
medium failure.

This requirement is met by specifying
a different destination machine and
installing MSwriter on that machine.

17 The Archiving Subsystem shall take
precautions to ensure that the
archived data are identical to the
original data. These precautions will
be limited to UNIX-level functions to
verify that the input number of bytes
equals the output number of bytes.
Results of this test will be recorded in
a log file.

The archive protocol verifies that the
number of received bytes is equal to
the number of expected bytes.
Archive only logs when the number of
retries exceeds six (the Archiving Sub-
system also aborts in that case).

18 The Archiving Subsystem shall pro-
vide a mechanism to verify that the
bytes in the original data are identical
to the bytes in the archived data.

The archive protocol provides a check-
sum during the archive transmission.
 M a y 2 0 0 1 I D C - 7 . 5 . 1

A r c h i v i n g S u b s y s t e m

A r c h i v i n g S u b s y s t e m

I D C - 7 . 5 . 1 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 4:

Requirements
19 The Archiving System shall preserve
any compression and/or digital signa-
tures stored in the original data.

The Archiving Subsystem does not
modify the data while archiving.
Therefore, all compression and signa-
tures are maintained.

20 The Archiving Subsystem shall pre-
serve all identifiers (IDs) and load
dates of the original data.

IDs are maintained for fileproducts
and messages. With waveforms, this is
not feasible, as adjacent waveform
segments are merged. In addition,
load dates are updated to indicate the
time of archiving.

21 The Archiving Subsystem shall handle
exceptional cases, for example,
wfdisc records with zero or few sam-
ples.

This requirement is not fulfilled. A
change request (CMRva00764) has
been submitted to address this defi-
ciency.

TABLE 14: TRACEABILITY OF FUNCTIONAL REQUIREMENTS: SYSTEM
REQUIREMENTS

Requirement How Fulfilled

22 The Archiving Subsystem shall use an
ORACLE database.

The Archiving Subsystem accesses the
database using the GDI, which sup-
ports ORACLE.

23 The Archiving Subsystem shall use
command line arguments to pass run-
time parameters to the application
software. These arguments will be
provided in par files, and standard
IDC software will be used for reading
and parsing these files.

The Archiving Subsystem uses libpar
for obtaining run-time parameters.
libpar is an IDC global library and is
compatible with parameter files.

TABLE 13: TRACEABILITY OF FUNCTIONAL REQUIREMENTS: EXCEPTION
HANDLING AND RECOVERY PROCEDURES (CONTINUED)

Requirement How Fulfilled
571

A r c h i v i n g S u b s y s t e m

I D C - 7 . 5 . 1 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N
Refe rences

The following sources supplement or are referenced in document:

[DOD94a] Department of Defense, “Software Design Description,”
Military Standard Software Development and Documentation,
MIL-STD-498, 1994.

[DOD94b] Department of Defense, “Software Requirements
Specification,” Military Standard Software Development and
Documentation, MIL-STD-498, 1994.

[Gan79] Gane, C., and Sarson, T., Structured Systems Analysis: Tools and
Techniques, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1979.

[IDC3.4.1Rev2] Science Applications International Corporation, Veridian
Pacific-Sierra Research, Formats and Protocols for Messages,
Revision 2, SAIC-00/3005, PSR-00/TN2829, 2000.

[IDC5.1.1Rev2] Science Applications International Corporation, Veridian
Pacific-Sierra Research, Database Schema, Revision 2,
SAIC-00/3057, PSR-00/TN2830, 2000.

[IDC7.3.1] Science Applications International Corporation, Distributed
Application Control System (DACS), SAIC-01/3001, 2001.

[IDC7.4.2] Science Applications International Corporation, Pacific-Sierra
Research, Inc., Message Subsystem, SAIC-98/3003, 1998.

[IDC7.4.4] Science Applications International Corporation, Subscription
Subsystem, SAIC-98/3001, 1998.
1 59

A r c h i v i n g S u b s y s t e m

I D C - 7 . 5 . 1 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N
Appendix: Defin ing F i l ep roduc t s

This appendix describes how to configure the Archiving Subsystem to archive a

regularly produced set of files (a fileproduct) using the fileproducts interface. New

products that must be archived are usually added to the subsystem using the

fileproducts interface.
1 A1

S o f t w a r e
I D C D O C U M E N T A T I O N

A2
Appendix: Defin ing F i l ep roduc t s

The Archiving Subsystem is designed to support user-defined fileproducts. The

software design that underlies this capability is illustrated in the following

procedure (with an example), which is used to define a fileproduct.

The procedure to define a fileproduct is to add a record describing the fileproduct

to the fpdescription database table. The table is described in [IDC5.1.1Rev2]. The

required contents are a unique identifier (typeid), the product type, a description of

the product, the type of data, and the format of the data. With the description cre-

ated, a fileproduct row referencing the filesystem object can be generated. The

fileproduct row contains the directory (dir), filename (dfile), file offset (foff), and

product size (dsize) as required by the Archiving Subsystem. In addition, it contains

the typeid, which links to the fpdescription table, the time and end time of the

object, and the station and channel codes if appropriate for the file object. The

fileproduct rows can be added to the database by directly inserting the record, by

using the Data Services CSCI library libfileproduct, or by using the Subscription

Subsystem application write_fp [IDC7.4.4].

In addition to defining the fileproduct, the Archiving Subsystem must be configured

to handle the new product. These steps are: 1) add a row to the arch_data_type

table for the new data type, 2) define the datatype-specific parameters to create,

queue, and read processing intervals, and 3) read the fileproduct database rows. As

an example of this procedure, the steps involved in adding station capability

reports to the archiving process follow.
 M a y 2 0 0 1 I D C - 7 . 5 . 1

A r c h i v i n g S u b s y s t e m

A r c h i v i n g S u b s y s t e m

I D C - 7 . 5 . 1 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Appendix:

Defining Fi leproducts
First, add a row using the following SQL:

insert into arch_data_type values

 (3, ÔSTACAPÕ,ÕfileproductÕ,Õ-Õ,Õ-Õ, -1 ,-1, sysdate);

Then, define the datatype-specific configuration rules. For datatype STACAP, the

interval creation rules are to generate the interval rows for the reports on a daily

basis, back 30 days. The parameter value for this is as follows:

STACAP-interval_create="select distinct -1 intvlid, \

 ÕCAPARCÕ class, ÕSTACAPÕ name, \

 floor (fp.time/86400)*86400 time, \

 floor((fp.time+86400)/86400) *86400 endtime, \

 ÕNEWÕ state, to_date(Õ{current_lddate}Õ, \

 ÕYYYYMMDD HH24:MI:SSÕ) moddate, \

 to_date(Õ{current_lddate}Õ,ÕYYYYMMDD HH24:MI:SSÕ) \

 lddate\

 from fileproduct fp \

 where fp.typeid in (select typeid from fpdescription \

 where prodtype in (ÕSTA_STATUSÕ, ÕCHAN_STATUSÕ)) \

 and fp.time > {current_epoch} - 30 *86400 \

minus select distinct -1 intvlid, ÕCAPARCÕ class, \

 ÕSTACAPÕ name, i.time, i.endtime, ÕNEWÕ state, \

 to_date(Õ{current_lddate}Õ,ÕYYYYMMDD HH24:MI:SSÕ) \

 moddate, \

 to_date(Õ{current_lddate}Õ,ÕYYYYMMDD HH24:MI:SSÕ) \

 lddate \

 from $interval i \

 where i.time > {current_epoch} -86400*30 \

 and i.class=ÕCAPARCÕ \

 and i.name=ÕSTACAPÕÓ

This query has two primary sections: the first section creates the intervals and the

second section removes existing intervals. In addition, when Archive encounters

{current_epoch}, it replaces it with the current (system) epoch time.
A31

A4

▼

Appendix:

Defining Fi leproducts

S o f t w a r e
I D C D O C U M E N T A T I O N
The next parameter defines the queuing rules. For STACAP the intervals are

queued 10 days after the reports are generated. Therefore, the query is fairly

straightforward:

STACAP-interval_update="update interval\

 set state=ÕQUEUEDÕ, \

 moddate=to_date(Õ{current_lddate}Õ, \

 ÕYYYYMMDD HH24:MI:SSÕ) \

 where class=ÕCAPARCÕ \

 and state in (ÕNEWÕ, ÕRETRYÕ) \

 and time < {current_epoch} - 10*86400"

Two other parameterized database queries are defined: the query to read the

queued intervals and the query to read the fileproduct records for that interval. For

the example presented here, the read-interval query is in the parameter

STACAP-interval_read; it reads all of the records with interval.state=ÕQUEUEDÕ

for the class ÔCAPARCÕ:

STACAP-interval_select="select * from $(INTERVAL) \

 where state=ÕQUEUEDÕ \

 and class=ÕCAPARCÕ \

 order by time"

The final parameterized database query is in the parameter STACAP-read_data.

This reads the fileproduct rows for the interval of interest. An example of the

parameter value follows:

STACAP-read_data="select f.* from fileproduct f \

where f.typeid in

 (select typeid from fpdescription \

 where prodtype in (ÕSTA_STATUSÕ, ÕCHAN_STATUSÕ)) \

 and f.time between %f and %f-.00001 \

order by f.sta, f.time";

The first and second %f’s in this parameterized query are replaced by the inter-

val.time and interval.endtime, respectively. Archive performs this action using the C

function, sprintf.
 M a y 2 0 0 1 I D C - 7 . 5 . 1

A r c h i v i n g S u b s y s t e m

A r c h i v i n g S u b s y s t e m

I D C - 7 . 5 . 1 M a y 2 0 0

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Appendix:

Defining Fi leproducts
With the datatype-specific parameterized queries defined, there are a few other

datatype-specific parameters that must be added:

STACAP-archive_directory

STACAP-fileprefix

STACAP-filepost

These parameter values are discussed in the Archive man page.
A51

S o f t w a r e
I D C D O C U M E N T A T I O N

A r c h i v i n g S u b s y s t e m

I D C - 7 . 5 . 1 M a y 2 0 0
Glossa ry

Symbols

3-C

Three-component.

A

ACK/NAK

Acknowledgment or Negative Acknowl-
edgment.

architecture

Organizational structure of a system or
component.

architectural design

Collection of hardware and software
components and their interfaces to
establish the framework for the develop-
ment of a computer system.

archive

Single file formed from multiple inde-
pendent files for storage and backup
purposes. Often compressed and
encrypted.

archive (archival) database

Relational database that provides per-
manent storage of parametric and raw
data.

archive server

Machine that hosts the mass storage
device.

archive protocol

Protocol used for communications
between Archive and MSwriter.

archive timestamp frame

Data structure that contains timestamps
(start- and end-time), which is transmit-
ted using the archive protocol.

array

Collection of sensors distributed over a
finite area (usually in a cross or concen-
tric pattern) and referred to as a single
station.

ASCII

American Standard Code for Information
Interchange. Standard, unformatted
256-character set of letters and num-
bers.

associated database tables

Database tables that contain the location
of filesystem objects (for example,
wfdisc, msgdisc, and fileproduct).
G11

▼ Glossary

S o f t w a r e
I D C D O C U M E N T A T I O N

G2
attribute

(1) Database column. (2) Characteristic
of an item; specifically, a quantitative
measure of a S/H/I arrival such as azi-
muth, slowness, period, or amplitude.

AutoDRM

Automatic Data Request Manager.

C

change request

Procedure for reporting software prob-
lems or requesting upgrades.

CMR

Center for Monitoring Research.

command

Expression that can be input to a com-
puter system to initiate an action or
affect the execution of a computer pro-
gram.

communications frame

Data structure that contains the opera-
tional status/next frame and is transmit-
ted using the archive protocol.

component

(1) One dimension of a three-dimen-
sional signal; (2) The vertically or hori-
zontally oriented (north or east) sensor
of a station used to measure the dimen-
sion; (3) One of the parts of a system;
also referred to as a module or unit.

Comprehensive Nuclear-Test-Ban Treaty
Organization

Treaty User group that consists of the
Conference of States Parties (CSP), the
Executive Council, and the Technical
Secretariat.

Computer Software Component

Functionally or logically distinct part of a
computer software configuration item,
typically an aggregate of two or more
software units.

Computer Software Configuration Item

Aggregation of software that is desig-
nated for configuration management
and treated as a single entity in the con-
figuration management process.

configuration

(1) (hardware) Arrangement of com-
puter system or component as defined
by the number, nature, and interconnec-
tion of its parts. (2) (software) Set of
adjustable parameters, usually stored in
files, for applications to use at run time.

configuration item

Aggregation of hardware, software, or
both treated as a single entity in the con-
figuration management process.

configuration management

Directing and surveying the functional
and physical characteristics of a configu-
ration item, controlling changes to those
characteristics, and recording and
reporting changes and implementation,
and verifying compliance with require-
ments.
 M a y 2 0 0 1 I D C - 7 . 5 . 1

A r c h i v i n g S u b s y s t e m

S o f t w a r e
I D C D O C U M E N T A T I O N

▼Glossary

A r c h i v i n g S u b s y s t e m

I D C - 7 . 5 . 1 M a y 2 0 0
continuous waveform data

Waveform data that are transmitted to
the IDC on a nominally continuous basis.

control flow

Sequence in which operations are per-
formed during the execution of a com-
puter program.

COTS

Commercial-Off-the-Shelf; terminology
that designates products such as hard-
ware or software that can be acquired
from existing inventory and used with-
out modification.

CPU

Central Processing Unit.

CSC

Computer Software Component.

CSCI

Computer Software Configuration Item.

CTBTO

Comprehensive Nuclear-Test-Ban Treaty
Organization; Treaty User group that
consists of the Conference of States Par-
ties (CSP), the Executive Council, and
the Technical Secretariat.

D

DACS

Distributed Application Control System.
This software supports inter-application
message passing and process manage-
ment.

daemon

Executable program that runs continu-
ously without operator intervention.
Usually, the system starts daemons dur-
ing initialization. (Example: cron.)

data flow

Sequence in which data are transferred,
used, and transformed during the execu-
tion of a computer program.

data frame

Data structure that contains some type
of data and is transmitted using the
CD-1.0, CD-1.1, or archive protocol.

detailed design

Refined and expanded version of the
preliminary design of a system or com-
ponent. This design is complete enough
to be implemented.

disk loop

Storage device that continuously stores
new waveform data while simulta-
neously deleting the oldest data on the
device.

E

entity-relationship (E-R) diagram

Diagram that depicts a set of entities and
the logical relationships among them.

enumerated list

Construct that provides a convenient
way to associate constant values with
descriptive names.
G31

▼ Glossary

S o f t w a r e
I D C D O C U M E N T A T I O N

G4
epoch time

Number of seconds after January 1,
1970 00:00:00.0.

execute

Carry out an instruction, process, or
computer program.

F

failure

Inability of a system or component to
perform its required functions within
specified performance requirements.

file and data segment header frame

Data structure that contains the informa-
tion necessary to define a file system
object (dir, dfile, foff, and size). Data
structures are transmitted using the
archive protocol.

fileproduct

(1) Object method for creating a data-
base reference for any filesystem object.
(2) Database table whose records
describe files containing products.

filesystem

Named structure containing files in sub-
directories. For example, UNIX can sup-
port many filesystems; each has a unique
name and can be attached (or mounted)
anywhere in the existing file structure.

filesystem object

Portion of a file on the UNIX file system
that can be described by the file location
and name (dir and dfile), an offset loca-
tion within the file (foff), and its size
(dsize).

G

GB

Gigabyte. A measure of computer mem-
ory or disk space that is equal to 1,024
megabytes.

GDI

Generic Database Interface.

generic object

Construct used to hold and manipulate
data. The type of object determines the
data that it can contain. Also known as
an object or GObj.

GUI

Graphical User Interface.

H

host

Machine on a network that provides a
service or information to other comput-
ers. Every networked computer has a
hostname by which it is known on the
network.
 M a y 2 0 0 1 I D C - 7 . 5 . 1

A r c h i v i n g S u b s y s t e m

S o f t w a r e
I D C D O C U M E N T A T I O N

▼Glossary

A r c h i v i n g S u b s y s t e m

I D C - 7 . 5 . 1 M a y 2 0 0
I

ID

Identification; identifier.

IDC

International Data Centre.

IDC Operators

Technical staff that install, operate, and
maintain the IDC systems and provide
additional technical services to the indi-
vidual States Parties.

IMS

International Monitoring System.

instance

Running computer program. An individ-
ual program may have multiple instances
on one or more host computers.

IP

Internet protocol.

IP address

Internet Protocol address, for example:
140.162.1.27.

IPC

Interprocess communication. The mes-
saging system by which applications
communicate with each other through
libipc common library functions. See
tuxshell.

K

KB

Kilobyte. 1,024 bytes.

M

mass storage device (mass store)

Physical device that is capable of storing
exceptional data volumes as part of the
filesystem. Typically, this is a tape or disk
jukebox that uses media such as Com-
pact Disks (CD), Digital Versatile Disks
(DVD), and Digital Linear Tape (DLT).

MB

Megabyte. 1,024 kilobytes.

O

object

See generic object.

operations database

Relational database used by the opera-
tional system.

ORACLE

Vendor of the database management
system used at the PIDC and IDC.
G51

▼ Glossary

S o f t w a r e
I D C D O C U M E N T A T I O N

G6
P

parameter (par) file

ASCII file containing values for parame-
ters of a program. Par files are used to
replace command line arguments. The
files are formatted as a list of [token =
value] strings.

pathname

Filesystem specification for a file’s loca-
tion.

PIDC

Prototype International Data Centre.

PIDC System Developers

Contractors and other organizations
who are developing and testing compo-
nents of the PIDC technology.

PL/SQL

Procedural Language for SQL.

process

Function or set of functions in an appli-
cation that perform a task.

R

radionuclide

Pertaining to the technology for detect-
ing radioactive debris from nuclear reac-
tions.

RAM

Random Access Memory.

real time

Actual time during which something
takes place.

recovery

Restoration of a system, program, data-
base, or other system resource to a state
in which it can perform required func-
tions.

S

SAIC

Science Applications International Cor-
poration.

schema

Database structure description.

script

Small executable program, written with
UNIX and other related commands, that
does not need to be compiled.

socket

Type of file used for network communi-
cation between processes.

socket connection

Method allowing a program on one
machine to talk to a program on another
machine over a Transmission Control
Protocol/Internet Protocol (TCP/IP) con-
nection.

software unit

Discrete set of software statements that
implements a function; usually a sub-
component of a CSC.
 M a y 2 0 0 1 I D C - 7 . 5 . 1

A r c h i v i n g S u b s y s t e m

S o f t w a r e
I D C D O C U M E N T A T I O N

▼Glossary

A r c h i v i n g S u b s y s t e m

I D C - 7 . 5 . 1 M a y 2 0 0
Solaris

Name of the operating system used on
Sun Microsystems hardware.

SQL

Structured Query Language; a language
for manipulating data in a relational
database.

States Parties

Treaty user group who will operate their
own or cooperative facilities, which may
be NDCs.

station

Collection of one or more monitoring
instruments. Stations can have either
one sensor location (for example, BGCA)
or a spatially distributed array of sensors
(for example, ASAR).

station code (or ID)

(1) Code used to identify distinct sta-
tions. (2) Site code.

subsystem

Secondary or subordinate system within
the larger system.

T

TCP/IP

Transmission Control Protocol/Internet
Protocol.

time, epoch

See epoch time.

transactional

Description of operations that are
treated as a unit. If one of the operations
fails, the set fails and the system rolls
back to the state prior to the set of oper-
ations.

tuxshell

Process in the Distributed Processing
CSCI used to execute and manage appli-
cations. See IPC.

U

UNIX

Trade name of the operating system
used by the Sun workstations.

V

version

Initial release or re-release of a computer
software component.

W

waveform

Time-domain signal data from a sensor
(the voltage output) where the voltage
has been converted to a digital count
(which is monotonic with the amplitude
of the stimulus to which the sensor
responds).

wfdisc

Waveform description record or table.
G71

▼ Glossary

S o f t w a r e
I D C D O C U M E N T A T I O N

G8
WorkFlow

Software that displays the progress of
automated processing systems.

workstation

High-end, powerful desktop computer
preferred for graphics and usually net-
worked.
 M a y 2 0 0 1 I D C - 7 . 5 . 1

A r c h i v i n g S u b s y s t e m

S o f t w a r e
I D C D O C U M E N T A T I O N

A r c h i v i n g S u b s y s t e m

I D C - 7 . 5 . 1 M a y 2 0 0
I ndex

A

arch_data_type 13, 43, 45
Archive 31

controlling 32
error states 33
I/O 31
interfaces 32

archive protocol 26
attribute usage 46
AutoDRM 20

C

chan_groups 13, 44, 45
COTS software requirements 7
Create Intervals 15

D

DACS 12
database 12, 43

schema overview 13
data exchange 26
data flow

external 22
internal 23
symbols iv

design
conceptual 10
database 43

dlfile 13, 45

E

entity-relationship
diagram 45
symbols v

F

file and data segment header frame
structure 29

fileproduct 13, 43, 45
fpdescription 13, 43, 45

G

GetData 36
controlling 37
error states 37
I/O 36
interfaces 37

global libraries 12

H

hardware requirements 6
I11

▼ Index

S o f t w a r e
I D C D O C U M E N T A T I O N

I2
I

interface
with external users 20
with internal users 20
with operators 20
with other IDC systems 19

interval 13, 43, 45
IPC 12

L

lastid 14, 45
lastid_arcdb 13
libraries, global 12

M

ManageInterval 34
controlling 35
error states 36
I/O 35
interfaces 35

man pages iii
MergeData 37

controlling 38
I/O 37
interfaces 38

monitoring software 17
msgdisc 14, 43, 45
MSwriter 41

controlling 42
error states 42
I/O 42
interfaces 42

Q

Queue Intervals 16

R

ReadWriteData 39
controlling 40
error states 40
I/O 39
interfaces 40

requirements
COTS software 7
exception handling and recovery 52, 56
general 50, 53
generic functional 51, 54
hardware 6
system 53, 57
user interface 51, 55

Run Interval 17
processing flow 18

S

schema 45

T

timestamp frame
structure 28

typographical conventions vi

W

wfaux 14
wfdisc 14
WorkFlow 10, 17, 20
 M a y 2 0 0 1 I D C - 7 . 5 . 1

A r c h i v i n g S u b s y s t e m

	Cover Page
	Notice Page
	Contents
	Figures
	Tables
	About this Document
	Purpose
	Scope
	Audience
	Related Information
	Using this Document
	Conventions

	Chapter 1: Overview
	Introduction
	Functionality
	Identification
	Status of Development
	Background and History
	Operating Environment
	Hardware
	Commercial-Off-The-Shelf Software

	Chapter 2: Architectural Design
	Conceptual Design
	Design Issues
	Programming Language
	Global Libraries
	Database
	Interprocess Communication (IPC)
	Filesystem
	Design Model
	Database Schema Overview

	Functional Description
	Create Intervals
	Queue Intervals
	Run Interval
	Monitoring

	Interface Design
	Interface with Other IDC Systems
	Interface with Internal Users
	Interface with External Users
	Interface with Operators

	Chapter 3: Detailed Design
	Data Flow Model
	External Data Flow
	Internal Data Flow
	Flow of Internal Data Exchange (Archive Protocol)

	Processing Units
	Archive
	ManageInterval
	GetData
	MergeData
	ReadWriteData
	MSwriter

	Database Description
	Database Design
	Database Schema

	Chapter 4: Requirements
	Introduction
	General Requirements
	Functional Requirements
	Generic Functional Requirements
	User Interface
	Exception Handling and Recovery Procedures

	System Requirements
	Requirements Traceability

	References
	Appendix: Defining Fileproducts
	Glossary
	Index
	
	Print...

